On resonant mixed Caputo fractional differential equations

被引:4
|
作者
Guezane-Lakoud, Assia [1 ]
Kilicman, Adem [2 ,3 ]
机构
[1] Univ Badji Mokhtar Annaba, Dept Math, Lab Adv Mat, POB 12, Annaba 23000, Algeria
[2] Univ Putra Malaysia, Dept Math, Serdang 43400, Malaysia
[3] Univ Putra Malaysia, Inst Mathematcal Res, Serdang 43400, Malaysia
关键词
Boundary value problems (BVPs); Mawhin’ s coincidence degree; Fractional derivatives; Existence of solution; Resonance;
D O I
10.1186/s13661-020-01465-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this study is to discuss the existence of solutions for a boundary value problem at resonance generated by a nonlinear differential equation involving both right and left Caputo fractional derivatives. The proofs of the existence of solutions are mainly based on Mawhin's coincidence degree theory. We provide an example to illustrate the main result.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] On resonant mixed Caputo fractional differential equations
    Assia Guezane-Lakoud
    Adem Kılıçman
    [J]. Boundary Value Problems, 2020
  • [2] Resonant Integral Boundary Value Problems for Caputo Fractional Differential Equations
    Ma, Wenjie
    Meng, Shuman
    Cui, Yujun
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [3] Mixed Caputo Fractional Neutral Stochastic Differential Equations with Impulses and Variable Delay
    Abouagwa, Mahmoud
    Bantan, Rashad A. R.
    Almutiry, Waleed
    Khalaf, Anas D.
    Elgarhy, Mohammed
    [J]. FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [4] QUASILINEARIZATION FOR HYBRID CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS
    Devi, J. Vasundhara
    Radhika, V.
    [J]. DYNAMIC SYSTEMS AND APPLICATIONS, 2012, 21 (04): : 567 - 581
  • [5] Stability of nonlinear Caputo fractional differential equations
    Liu, Kewei
    Jiang, Wei
    [J]. APPLIED MATHEMATICAL MODELLING, 2016, 40 (5-6) : 3919 - 3924
  • [6] ON EULER METHODS FOR CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS
    Tomasek, Petr
    [J]. ARCHIVUM MATHEMATICUM, 2023, 59 (03): : 287 - 294
  • [7] A hybrid algorithm for Caputo fractional differential equations
    Salgado, G. H. O.
    Aguirre, L. A.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 33 : 133 - 140
  • [8] On Caputo-Hadamard fractional differential equations
    Gohar, Madiha
    Li, Changpin
    Yin, Chuntao
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (07) : 1459 - 1483
  • [9] Abstract differential equations and Caputo fractional derivative
    Carvalho-Neto, P. M.
    [J]. SEMIGROUP FORUM, 2022, 104 (03) : 561 - 583
  • [10] Abstract differential equations and Caputo fractional derivative
    P. M. Carvalho-Neto
    [J]. Semigroup Forum, 2022, 104 : 561 - 583