T-cell epitope prediction with combinatorial peptide libraries

被引:9
|
作者
Sung, MH
Zhao, YD
Martin, R
Simon, R
机构
[1] NCI, Mol Stat & Bioinformat Sect, Biometr Res Branch, NIH, Bethesda, MD 20892 USA
[2] American Univ, Dept Math & Stat, Washington, DC 20016 USA
[3] NINDS, Neuroimmunol Branch, NIH, Bethesda, MD 20892 USA
关键词
epitope prediction; cell-mediated immunity; combinatorial peptide library; autoimmunity; TCR ligand identification; MHC class II binding;
D O I
10.1089/106652702760138619
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
T cell receptors (TCR) recognize antigenic peptides in complex with the major histocompatibility complex (MHC) molecules and this trimolecular interaction initiates antigen-specific signaling pathways in the responding T lymphocytes. For the study of autoimmune diseases and vaccine development, it is important to identify peptides (epitopes) that can stimulate a given TCR. The use of combinatorial peptide libraries has recently been introduced as a powerful tool for this purpose. A combinatorial library of n-mer peptides is a set of complex mixtures each characterized by one position fixed to be a specified amino acid and all other positions randomized. A given TCR can be fingerprinted by screening a variety of combinatorial libraries using a proliferation assay. Here, we present statistical models for elucidating the recognition profile of a TCR using combinatorial library proliferation assay data and known MHC binding data.
引用
收藏
页码:527 / 539
页数:13
相关论文
共 50 条
  • [1] Use of combinatorial peptide libraries for T-cell epitope mapping
    Sospedra, M
    Pinilla, C
    Martin, R
    METHODS, 2003, 29 (03) : 236 - 247
  • [2] A T-cell epitope determined with random peptide libraries and combinatorial peptide chemistry stimulates T cells specific for cutaneous T-cell lymphoma
    Linnemann, T
    Wiesmüller, KH
    Gellrich, S
    Kaltoft, K
    Sterry, W
    Walden, P
    ANNALS OF ONCOLOGY, 2000, 11 : 95 - 99
  • [3] Probing degeneracy in T-cell recognition using peptide combinatorial libraries
    Hemmer, B
    Vergelli, M
    Pinilla, C
    Houghten, R
    Martin, R
    IMMUNOLOGY TODAY, 1998, 19 (04): : 163 - 168
  • [4] Prediction of T-cell epitope
    Tsurui, Rornichi
    Takahashi, Takuya
    JOURNAL OF PHARMACOLOGICAL SCIENCES, 2007, 105 (04) : 299 - 316
  • [5] A systematic approach for comprehensive T-cell epitope discovery using peptide libraries
    Beissbarth, T
    Tye-Din, JA
    Smyth, GK
    Speed, TP
    Anderson, RP
    BIOINFORMATICS, 2005, 21 : I29 - I37
  • [6] Combinatorial peptide libraries and molecular recognition in T-cell mediated immune response
    Fleckenstein, B
    Wiesmüller, KH
    Kalbus, M
    Martin, R
    Jung, G
    PEPTIDE SCIENCE - PRESENT AND FUTURE, 1999, : 788 - 791
  • [7] Tumour specific epitope, for cutaneous T cell lymphoma developed with randomised peptide libraries and combinatorial peptide chemistry
    Linnemann, T
    Wiesmüller, KH
    Kaltoft, K
    Sterry, W
    Walden, P
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 1999, 113 (03) : 431 - 431
  • [8] Peptide libraries for T cell epitope screening and characterization
    Rodda, SJ
    JOURNAL OF IMMUNOLOGICAL METHODS, 2002, 267 (01) : 71 - 77
  • [9] EXACT PREDICTION OF A NATURAL T-CELL EPITOPE
    ROTZSCHKE, O
    FALK, K
    STEVANOVIC, S
    JUNG, G
    WALDEN, P
    RAMMENSEE, HG
    EUROPEAN JOURNAL OF IMMUNOLOGY, 1991, 21 (11) : 2891 - 2894
  • [10] TEpredict: Software for T-Cell epitope prediction
    D. V. Antonets
    A. Z. Maksyutov
    Molecular Biology, 2010, 44 : 119 - 127