Path planning in a Riemannian manifold using optimal control

被引:0
|
作者
Mazumdar, Souma [1 ]
机构
[1] SN Bose Natl Ctr Basic Sci, Dept Theoret Sci, Block JD,Sect 3, Kolkata 700106, India
关键词
Motion planning; optimal control; geometric control theory; Riemannian manifold; Riemannian curvature; nonlinear differential equation;
D O I
10.1142/S0219887820501819
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the motion planning of an object in a Riemannian manifold where the object is steered from an initial point to a final point utilizing optimal control. Considering Pontryagin Minimization Principle we compute the Optimal Controls needed for steering the object from initial to final point. The Optimal Controls were solved with respect to time t and shown to have norm 1 which should be the case when the extremal trajectories, which are the solutions of Pontryagin Principle, are arc length parametrized. The extremal trajectories are supposed to be the geodesics on the Riemannian manifold. So we compute the geodesic curvature and the Gaussian curvature of the Riemannian structure.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Maximum payload path planning for redundant manipulator using indirect solution of optimal control problem
    Korayem, M. H.
    Nikoobin, A.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2009, 44 (7-8): : 725 - 736
  • [32] Simultaneous path planning and trajectory optimization for robotic manipulators using discrete mechanics and optimal control
    Shareef, Zeeshan
    Traechtler, Ansgar
    ROBOTICA, 2016, 34 (06) : 1322 - 1334
  • [33] Optimal Control and Path Planning of a 3PRS Robot Using Indirect Variation Algorithm
    Tourajizadeh, H.
    Gholami, O.
    ROBOTICA, 2020, 38 (05) : 903 - 924
  • [34] UAV path planning using artificial potential field method updated by optimal control theory
    Chen, Yong-bo
    Luo, Guan-chen
    Mei, Yue-song
    Yu, Jian-qiao
    Su, Xiao-long
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2016, 47 (06) : 1407 - 1420
  • [35] THE RIEMANNIAN MANIFOLD OF ALL RIEMANNIAN METRICS
    GILMEDRANO, O
    MICHOR, PW
    QUARTERLY JOURNAL OF MATHEMATICS, 1991, 42 (166): : 183 - 202
  • [36] Optimal Trajectory Planning for Multiple Waypoint Path Planning using Tabu Search
    Balan, Karthika
    Luo, Chaomin
    2018 9TH IEEE ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2018, : 497 - 501
  • [37] Path Planning for Optimal Classification
    Faied, M.
    Kabamba, P.
    Hyun, B.
    Girard, A.
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 520 - 527
  • [38] Riemannian block SPD coupling manifold and its application to optimal transport
    Han, Andi
    Mishra, Bamdev
    Jawanpuria, Pratik
    Gao, Junbin
    MACHINE LEARNING, 2024, 113 (04) : 1595 - 1622
  • [39] Riemannian block SPD coupling manifold and its application to optimal transport
    Andi Han
    Bamdev Mishra
    Pratik Jawanpuria
    Junbin Gao
    Machine Learning, 2024, 113 : 1595 - 1622
  • [40] Functional inequality on path space over a non-compact Riemannian manifold
    Chen, Xin
    Wu, Bo
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (12) : 6753 - 6779