The role of organic ligand shell structures in colloidal nanocrystal synthesis

被引:120
|
作者
Calvin, Jason J. [1 ,2 ]
Brewer, Amanda S. [1 ,2 ]
Alivisatos, A. Paul [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[4] Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA
来源
NATURE SYNTHESIS | 2022年 / 1卷 / 02期
基金
美国国家科学基金会;
关键词
CDSE QUANTUM DOTS; MEDIATED SYNTHESIS; MICELLE FORMATION; TEMPERATURE; SUPERLATTICES; PEROVSKITE; SIZE; THERMODYNAMICS; LUMINESCENCE; STABILITY;
D O I
10.1038/s44160-022-00025-4
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organic ligands are essential in the growth of monodisperse colloidal inorganic nanocrystals and can be leveraged to create a wide variety of shapes and sizes. Inorganic nanocrystals coated with surfactant-like organic molecules have a vast range of properties that arise from the combination of the individual components. In this Review, we discuss the role that the tails of the organic ligands play in the synthesis and properties of colloidal nanocrystals, particularly the collective effects of the organic ligands on the surface. Ligand-ligand interactions influence the thermodynamic and kinetic properties of the nanocrystals, as well as alter their colloidal stability. These interactions should inform the conceptualization of new nanocrystal syntheses as they influence the surface energy of the colloid, and these interactions should play a role in subsequent assembly strategies to prepare nanocrystal superlattices, which are driven by interparticle interactions. Inorganic nanocrystals coated with surfactant-like organic molecules have a vast range of properties arising from the combination of their components. In this Review, the role of the organic ligands on the synthesis of colloidal nanocrystals is discussed with a focus on the tails of the ligands and their collective effects on the surface.
引用
收藏
页码:127 / 137
页数:11
相关论文
共 50 条
  • [1] The role of organic ligand shell structures in colloidal nanocrystal synthesis
    Jason J. Calvin
    Amanda S. Brewer
    A. Paul Alivisatos
    Nature Synthesis, 2022, 1 : 127 - 137
  • [2] Colloidal nanocrystal synthesis and the organic–inorganic interface
    Yadong Yin
    A. Paul Alivisatos
    Nature, 2005, 437 : 664 - 670
  • [3] Colloidal nanocrystal synthesis and the organic-inorganic interface
    Yin, Y
    Alivisatos, AP
    NATURE, 2005, 437 (7059) : 664 - 670
  • [4] The Role of Nanocrystal Facets in Sustainable Organic Synthesis
    Das, Soumyadip
    Chanda, Kaushik
    CHEMNANOMAT, 2022, 8 (11)
  • [5] Colloidal synthesis of nanocrystals and nanocrystal superlattices
    Murray, CB
    Sun, SH
    Gaschler, W
    Doyle, H
    Betley, TA
    Kagan, CR
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2001, 45 (01) : 47 - 56
  • [6] Chemical Considerations for Colloidal Nanocrystal Synthesis
    De Roo, Jonathan
    CHEMISTRY OF MATERIALS, 2022, 34 (13) : 5766 - 5779
  • [7] Colloidal Stability of Apolar Nanoparticles: The Role of Particle Size and Ligand Shell Structure
    Kister, Thomas
    Monego, Debora
    Mulvaney, Paul
    Widmer-Cooper, Asaph
    Kraus, Tobias
    ACS NANO, 2018, 12 (06) : 5969 - 5977
  • [8] Colloidal nanocrystal heterostructures with core/shell, linear, and branched topology
    Milliron, DJ
    Hughes, S
    Alivisatos, AP
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 227 : U274 - U274
  • [9] Ligand Crosslinking Boosts Thermal Transport in Colloidal Nanocrystal Solids
    Wang, Zhongyong
    Singaravelu, Arun Sundar S.
    Dai, Rui
    Nian, Qiong
    Chawla, Nikhilesh
    Wang, Robert Y.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (24) : 9556 - 9563
  • [10] Differentiating Thermal Conductances at Semiconductor Nanocrystal/Ligand and Ligand/Solvent Interfaces in Colloidal Suspensions
    Liang, Yuxing
    Diroll, Benjamin T.
    Wong, Kae-Lin
    Harvey, Samantha M.
    Wasielewski, Michael
    Ong, Wee-Liat
    Schaller, Richard D.
    Malen, Jonathan A.
    NANO LETTERS, 2023, 23 (09) : 3687 - 3693