ASYMPTOTIC BOUNDS FOR SPECIAL VALUES OF SHIFTED CONVOLUTION DIRICHLET SERIES

被引:1
|
作者
Beckwith, Olivia [1 ]
机构
[1] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
关键词
PROJECTIONS; FORMS;
D O I
10.1090/proc/13417
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Hoffstein and Hulse defined the shifted convolution series of two cusp forms by "shifting" the usual Rankin-Selberg convolution L-series by a parameter h. We use the theory of harmonic Maass forms to study the behavior in h-aspect of certain values of these series and prove a polynomial bound as h -> 8. Our method relies on a result of Mertens and Ono, who showed that these values are Fourier coefficients of mixed mock modular forms.
引用
收藏
页码:2373 / 2381
页数:9
相关论文
共 50 条