Controlling chimera states via minimal coupling modification

被引:16
|
作者
Ruzzene, Giulia [1 ]
Omelchenko, Iryna [2 ]
Schoell, Eckehard [2 ]
Zakharova, Anna [2 ]
Andrzejak, Ralph G. [1 ,3 ]
机构
[1] Univ Pompeu Fabra, Dept Informat & Commun Technol, Carrer Roc Boronat 138, Barcelona 08018, Catalonia, Spain
[2] Tech Univ Berlin, Inst Theoret Phys, Hardenbergstr 36, D-10623 Berlin, Germany
[3] Barcelona Inst Sci & Technol, Inst Bioengn Catalonia IBEC, Baldiri Reixac 10-12, Barcelona 08028, Spain
关键词
POPULATIONS;
D O I
10.1063/1.5097570
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a method to control chimera states in a ring-shaped network of nonlocally coupled phase oscillators. This method acts exclusively on the network's connectivity. Using the idea of a pacemaker oscillator, we investigate which is the minimal action needed to control chimeras. We implement the pacemaker choosing one oscillator and making its links unidirectional. Our results show that a pacemaker induces chimeras for parameters and initial conditions for which they do not form spontaneously. Furthermore, the pacemaker attracts the incoherent part of the chimera state, thus controlling its position. Beyond that, we find that these control effects can be achieved with modifications of the network's connectivity that are less invasive than a pacemaker, namely, the minimal action of just modifying the strength of one connection allows one to control chimeras.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Controlling chimera states: The influence of excitable units
    Isele, Thomas
    Hizanidis, Johanne
    Provata, Astero
    Hoevel, Philipp
    PHYSICAL REVIEW E, 2016, 93 (02)
  • [2] Chimera States in Two Coupled Ensembles of Henon and Lozi Maps. Controlling Chimera States
    Anishchenko, Vadim
    Rybalova, Elena
    Semenova, Nadezhda
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [3] Chimera states under genuine local coupling
    García-Morales, Vladimir
    Manzanares, José A.
    Krischer, Katharina
    Chaos, Solitons and Fractals, 2022, 165
  • [4] Chimera states of neuron networks with adaptive coupling
    Huo, Siyu
    Tian, Changhai
    Kang, Ling
    Liu, Zonghua
    NONLINEAR DYNAMICS, 2019, 96 (01) : 75 - 86
  • [5] Chimera states: Effects of different coupling topologies
    Bera, Bidesh K.
    Majhi, Soumen
    Ghosh, Dibakar
    Perc, Matjaz
    EPL, 2017, 118 (01)
  • [6] Chimera states of neuron networks with adaptive coupling
    Siyu Huo
    Changhai Tian
    Ling Kang
    Zonghua Liu
    Nonlinear Dynamics, 2019, 96 : 75 - 86
  • [7] Chimera states under genuine local coupling
    Garcia-Morales, Vladimir
    Manzanares, Jose A.
    Krischer, Katharina
    CHAOS SOLITONS & FRACTALS, 2022, 165
  • [8] Controlling Unstable Chaos: Stabilizing Chimera States by Feedback
    Sieber, Jan
    Omel'chenko, Oleh E.
    Wolfrum, Matthias
    PHYSICAL REVIEW LETTERS, 2014, 112 (05)
  • [9] Pinning Stabilization of Stochastic Networks With Finite States via Controlling Minimal Nodes
    Liu, Yang
    Wang, Liqing
    Lu, Jianquan
    Yu, Li
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (04) : 2361 - 2369