The representation invariants of 2-term silting complexes

被引:2
|
作者
Hu, Yonggang [1 ,2 ]
机构
[1] Beijing Univ Technol, Fac Sci, Beijing 100124, Peoples R China
[2] Univ Sherbrooke, Dept Math, Sherbrooke, PQ J1K 2R1, Canada
基金
中国国家自然科学基金;
关键词
Representation dimension; silting theory; support tau-tilting module; tilting module; torsion pairs; DIMENSION;
D O I
10.1080/00927872.2020.1858307
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a finite dimensional k-algebra and P a 2-term silting complex in K-b (projA): In this article, we investigate the representation dimension of End(Db(A))(P) by the silting theory. We show that if P is a separating silting complex with certain homological restriction, then, rep.dim A = rep.dim End(Db(A))(P): This result generalizes the earlier result about tilting modules to the silting version. It is well-known that H-0 (P) is a support s-tilting module. We show that rep.dim End(A)(H-0 (P)) = rep.dim A=ann(A) (H-0(P)) whenever P is both separating and splitting. We apply this to obtain the corresponding consequence for support tau-tilting modules.
引用
下载
收藏
页码:1866 / 1883
页数:18
相关论文
共 50 条