Integrating genomic binding site predictions using real-valued meta classifiers

被引:1
|
作者
Sun, Yi [1 ]
Robinson, Mark [2 ]
Adams, Rod [1 ]
te Boekhorst, Rene [1 ]
Rust, Alistair G. [3 ]
Davey, Neil [1 ]
机构
[1] Univ Hertfordshire, Sci & Technol Res Inst, Hatfield AL10 9AB, Herts, England
[2] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA
[3] Inst Syst Biol, Seattle, WA USA
来源
NEURAL COMPUTING & APPLICATIONS | 2009年 / 18卷 / 06期
关键词
REGULATORY REGIONS; TRANSCRIPTION; ELEMENTS;
D O I
10.1007/s00521-008-0204-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Currently the best algorithms for predicting transcription factor binding sites in DNA sequences are severely limited in accuracy. There is good reason to believe that predictions from different classes of algorithms could be used in conjunction to improve the quality of predictions. In this paper, we apply single layer networks, rules sets, support vector machines and the Adaboost algorithm to predictions from 12 key real valued algorithms. Furthermore, we use a 'window' of consecutive results as the input vector in order to contextualise the neighbouring results. We improve the classification result with the aid of under- and over-sampling techniques. We find that support vector machines and the Adaboost algorithm outperform the original individual algorithms and the other classifiers employed in this work. In particular they give a better tradeoff between recall and precision.
引用
收藏
页码:577 / 590
页数:14
相关论文
共 50 条
  • [1] Integrating genomic binding site predictions using real-valued meta classifiers
    Yi Sun
    Mark Robinson
    Rod Adams
    Rene te Boekhorst
    Alistair G. Rust
    Neil Davey
    [J]. Neural Computing and Applications, 2009, 18 : 577 - 590
  • [2] Using real-valued meta classifiers to integrate binding site predictions
    Sun, Y
    Robinson, M
    Adams, R
    Kaye, P
    Rust, AG
    Davey, N
    [J]. PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 481 - 486
  • [3] Using real-valued meta classifiers to integrate and contextualize binding site predictions
    Robinson, Mark
    Sharabi, Offer
    Sun, Yi
    Adams, Rod
    Boekhorst, Rene te
    Rust, Alistair G.
    Davey, Neil
    [J]. ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT 1, 2007, 4431 : 822 - +
  • [4] Integrating binding site predictions using meta classification methods
    Sun, Y
    Robinson, M
    Adams, R
    Rust, AG
    Kaye, P
    Davey, N
    [J]. Adaptive and Natural Computing Algorithms, 2005, : 321 - 324
  • [5] On the Upper Bounds of the Real-Valued Predictions
    Benevenuta, Silvia
    Fariselli, Piero
    [J]. BIOINFORMATICS AND BIOLOGY INSIGHTS, 2019, 13
  • [6] Prefix coding of integers with real-valued predictions using cosets
    Ali, Mortuza
    Murshed, Manzur
    [J]. IEEE COMMUNICATIONS LETTERS, 2007, 11 (10) : 814 - 816
  • [7] Predictive Coding of Integers with Real-valued Predictions
    Ali, Mortuza
    Murshed, Manzur
    [J]. 2013 DATA COMPRESSION CONFERENCE (DCC), 2013, : 431 - 440
  • [8] Fast learning complex-valued classifiers for real-valued classification problems
    Savitha, R.
    Suresh, S.
    Sundararajan, N.
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2013, 4 (05) : 469 - 476
  • [9] Fast learning complex-valued classifiers for real-valued classification problems
    R. Savitha
    S. Suresh
    N. Sundararajan
    [J]. International Journal of Machine Learning and Cybernetics, 2013, 4 : 469 - 476
  • [10] Fast Learning Fully Complex-Valued Classifiers for Real-Valued Classification Problems
    Savitha, R.
    Suresh, S.
    Sundararajan, N.
    Kim, H. J.
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2011, PT I, 2011, 6675 : 602 - +