Driving Cells with Light-Controlled Topographies

被引:25
|
作者
Puliafito, Alberto [1 ,2 ]
Ricciardi, Serena [3 ]
Pirani, Federica [3 ]
Cermochova, Viktorie [3 ,4 ]
Boarino, Luca [5 ,6 ]
De Leo, Natascia [5 ,6 ]
Primo, Luca [1 ,2 ]
Descrovi, Emiliano [3 ]
机构
[1] Candiolo Canc Inst FPO IRCCS, I-10060 Turin, Italy
[2] Univ Turin, Dept Oncol, I-10060 Turin, Italy
[3] Polytech Univ Turin, Dept Appl Sci & Technol, Cso Duca Abruzzi 24, I-10129 Turin, Italy
[4] Univ Chem Technol Prague, Dept Chem Engn, Tech 3, Prague 16628 6, Czech Republic
[5] Ist Nazl Ric Metrol, Quantum Res Labs, Str Cacce 91, I-10135 Turin, Italy
[6] Ist Nazl Ric Metrol, Nanofacil Piemonte Nanosci & Mat Div, Str Cacce 91, I-10135 Turin, Italy
关键词
cell-instructive substrates; cell migration; cell orientation; light-responsive polymers; optical manipulation; SURFACE-RELIEF GRATINGS; RESPONSIVE POLYMER; AZOBENZENE; PHOTOFLUIDIZATION; DIFFERENTIATION; MECHANOBIOLOGY; DEFORMATION; MECHANISMS; PATTERNS; BEHAVIOR;
D O I
10.1002/advs.201801826
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cell-substrate interactions can modulate cellular behaviors in a variety of biological contexts, including development and disease. Light-responsive materials have been recently proposed to engineer active substrates with programmable topographies directing cell adhesion, migration, and differentiation. However, current approaches are affected by either fabrication complexity, limitations in the extent of mechanical stimuli, lack of full spatio-temporal control, or ease of use. Here, a platform exploiting light to plastically deform micropatterned polymeric substrates is presented. Topographic changes with remarkable relief depths in the micron range are induced in parallel, by illuminating the sample at once, without using raster scanners. In few tens of seconds, complex topographies are instructed on demand, with arbitrary spatial distributions over a wide range of spatial and temporal scales. Proof-of-concept data on breast cancer cells and normal kidney epithelial cells are presented. Both cell types adhere and proliferate on substrates without appreciable cell damage upon light-induced substrate deformations. User-provided mechanical stimulation aligns and guides cancer cells along the local deformation direction and constrains epithelial colony growth by biasing cell division orientation. This approach is easy to implement on general-purpose optical microscopy systems and suitable for use in cell biology in a wide variety of applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Light-Controlled Nanocarriers for Drug Release
    Gong Zhaocui
    Yin Chao
    Zhao Hui
    Lu Xiaomei
    Fan Quli
    Huang Wei
    PROGRESS IN CHEMISTRY, 2016, 28 (09) : 1387 - 1396
  • [22] Light-controlled synthetic gene circuits
    Gardner, Laura
    Deiters, Alexander
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2012, 16 (3-4) : 292 - 299
  • [23] Nanostructures for NIR light-controlled therapies
    Yang, Yanmei
    Aw, Junxin
    Xing, Bengang
    NANOSCALE, 2017, 9 (11) : 3698 - 3718
  • [24] Synchronization in chains of light-controlled oscillators
    Avila, G. M. Ramirez
    Guisset, J. L.
    Deneubourg, J. L.
    INTERNATIONAL CONFERENCE ON CONTROL AND SYNCHRONIZATION OF DYNAMICAL SYSTEMS (CSDS-2005), 2005, 23 : 252 - 258
  • [25] Real-time observation of light-controlled transcription in living cells
    Rademacher, Anne
    Erdel, Fabian
    Trojanowski, Jorge
    Schumacher, Sabrina
    Rippe, Karsten
    JOURNAL OF CELL SCIENCE, 2017, 130 (24) : 4213 - 4224
  • [26] Light-Controlled Release of Therapeutic Proteins from Red Blood Cells
    Vickerman, Brianna M.
    O'Banion, Colin P.
    Tan, Xianming
    Lawrence, David S.
    ACS CENTRAL SCIENCE, 2021, 7 (01) : 93 - 103
  • [27] Light-controlled DNA binding of bisbenzamidines
    Sanchez, Mateo I.
    Vazquez, Olalla
    Eugenio Vazquez, M.
    Mascarenas, Jose L.
    CHEMICAL COMMUNICATIONS, 2011, 47 (39) : 11107 - 11109
  • [28] Spiropyrans for light-controlled drug delivery
    Cardano, Francesca
    Del Canto, Elisa
    Giordani, Silvia
    DALTON TRANSACTIONS, 2019, 48 (41) : 15537 - 15544
  • [29] Light-Controlled Spin Filtering in Bacteriorhodopsin
    Einati, Hila
    Mishra, Debabrata
    Friedman, Noga
    Sheves, Mordechai
    Naaman, Ron
    NANO LETTERS, 2015, 15 (02) : 1052 - 1056
  • [30] Light-controlled flavonoid biosynthesis in fruits
    Zoratti, Laura
    Karppinen, Katja
    Escobar, Ana Luengo
    Haggman, Hely
    Jaakola, Laura
    FRONTIERS IN PLANT SCIENCE, 2014, 5