Cultured cell-derived extracellular matrices to enhance the osteogenic differentiation and angiogenic properties of human mesenchymal stem/stromal cells

被引:49
|
作者
Carvalho, Marta S. [1 ,2 ]
Silva, Joao C. [1 ,2 ]
Cabral, Joaquim M. S. [2 ,3 ]
da Silva, Claudia L. [2 ,3 ]
Vashishth, Deepak [1 ]
机构
[1] Rensselaer Polytech Inst, Dept Biomed Engn, Ctr Biotechnol & Interdisciplinary Studies, Troy, NY 12180 USA
[2] Univ Lisbon, Inst Super Tecn, IBB, Dept Bioengn, Lisbon, Portugal
[3] Univ Lisbon, Discoveries Ctr Regenerat & Precis Med, Inst Super Tecn, Lisbon Campus, Lisbon, Portugal
关键词
angiogenesis; cell-derived extracellular matrix; human umbilical vein endothelial cells; mesenchymal stem; stromal cells; osteogenesis; STEM-CELLS; IN-VITRO; ENDOTHELIAL-CELLS; GENE-EXPRESSION; PROLIFERATION; COCULTURE; OSTEOBLASTS; VITRONECTIN; EXPANSION;
D O I
10.1002/term.2907
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Cell-derived extracellular matrix (ECM) consists of a complex assembly of fibrillary proteins, matrix macromolecules, and associated growth factors that mimic the composition and organization of native ECM micro-environment. Therefore, cultured cell-derived ECM has been used as a scaffold for tissue engineering settings to create a biomimetic micro-environment, providing physical, chemical, and mechanical cues to cells, and support cell adhesion, proliferation, migration, and differentiation. Here, we present a new strategy to produce different combinations of decellularized cultured cell-derived ECM (dECM) obtained from different cultured cell types, namely, mesenchymal stem/stromal cells (MSCs) and human umbilical vein endothelial cells (HUVECs), as well as the coculture of MSC:HUVEC and investigate the effects of its various compositions on cell metabolic activity, osteogenic differentiation, and angiogenic properties of human bone marrow (BM)-derived MSCs, vital features for adult bone tissue regeneration and repair. Our findings demonstrate that dECM presented higher cell metabolic activity compared with tissue culture polystyrene. More importantly, we show that MSC:HUVEC ECM enhanced the osteogenic and angiogenic potential of BM MSCs, as assessed by in vitro assays. Interestingly, MSC:HUVEC (1:3) ECM demonstrated the best angiogenic response of MSCs in the conditions tested. To the best of our knowledge, this is the first study that demonstrates that dECM derived from a coculture of MSC:HUVEC impacts the osteogenic and angiogenic capabilities of BM MSCs, suggesting the potential use of MSC:HUVEC ECM as a therapeutic product to improve clinical outcomes in bone regeneration.
引用
收藏
页码:1544 / 1558
页数:15
相关论文
共 50 条
  • [1] Human embryonic stem cell-derived mesenchymal stromal cells
    Hematti, Peiman
    TRANSFUSION, 2011, 51 : 138S - 144S
  • [2] Highly effective induction of cell-derived extracellular matrix by macromolecular crowding for osteogenic differentiation of mesenchymal stem cells
    Yoo, Yong-In
    Ko, Kyoung-Won
    Cha, Seung-Gyu
    Park, So-Yeon
    Woo, Jiwon
    Han, Dong Keun
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2022, 107 : 391 - 400
  • [3] Human amnion-derived mesenchymal stem cells promote osteogenic and angiogenic differentiation of human adipose-derived stem cells
    Zhang, Chunli
    Yu, Lidong
    Liu, Songjian
    Wang, Yuli
    PLOS ONE, 2017, 12 (10):
  • [4] The Decellularized Cell-Derived Extracellular Matrix Enhances the Paracrine Function of Human Mesenchymal Stromal/Stem Cells
    Ushakov, Roman
    Ratushnyy, Andrey
    Buravkova, Ludmila
    Tolkunova, Elena
    Burova, Elena
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (04)
  • [5] Embryonic stem cell-derived extracellular vesicles enhance the therapeutic effect of mesenchymal stem cells
    Zhang, Yan
    Xu, Jia
    Liu, Siying
    Lim, Meikuang
    Zhao, Shuang
    Zhang, Kaiyue
    Wang, Lingling
    Ji, Qian
    Han, Zhongchao
    Kong, Deling
    Li, Zongjin
    Liu, Na
    Cui, kaige
    THERANOSTICS, 2019, 9 (23): : 6976 - 6990
  • [6] Human mesenchymal stem/stromal cell-derived extracellular vesicle transport in meniscus fibrocartilage
    Schwartz, Gabi
    Rana, Samir
    Jackson, Alicia R.
    Lenero, Clarissa
    Best, Thomas M.
    Kouroupis, Dimitrios
    Travascio, Francesco
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2025, 43 (02) : 457 - 465
  • [7] Synergistic Effect of Cell-Derived Extracellular Matrices and Topography on Osteogenesis of Mesenchymal Stem Cells
    Yang, Liangliang
    Ge, Lu
    van Rijn, Patrick
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (23) : 25591 - 25603
  • [8] Human Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Neural Differentiation of Neural Progenitor Cells
    Park, So-Yeon
    Kim, Da-Seul
    Kim, Hyun-Mun
    Lee, Jun-Kyu
    Hwang, Dong-Youn
    Kim, Tae-Hyung
    You, Seungkwon
    Han, Dong Keun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (13)
  • [9] Substrate Stiffness Influences Osteogenic Differentiation of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells
    Treadwell, K.
    Sauque, M.
    Bilousova, G.
    Payne, K. A.
    TISSUE ENGINEERING PART A, 2015, 21 : S280 - S280
  • [10] Conditioned Medium Enhances Osteogenic Differentiation of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells
    Siying Zhong
    Xufeng He
    Yuexia Li
    Xiangxin Lou
    Tissue Engineering and Regenerative Medicine, 2019, 16 : 141 - 150