Direct-to-Earth Mission Concept for a Europa Lander

被引:0
|
作者
Dooley, Jennifer [1 ]
机构
[1] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
基金
美国国家航空航天局;
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A NASA HQ-directed study team led by JPL with partners including APL, MSFC, GSFC, LaRC and Sandia National Laboratory has recently presented an updated mission concept for a Europa Lander that would search for bio-signatures and signs of life in the near-subsurface of the Jovian moon. This paper will describe that mission architecture including science objectives, interplanetary and delivery trajectory, flight system, planetary protection architecture and mission phases. The mission would follow the Europa Multiple-Flyby Mission Clipper planned for launch in 2023, which would provide reconnaissance imagery and other data to the Lander for use in selecting a scientifically compelling site and certifying it for engineering safety. The Europa Lander concept accommodates the Model Payload identified by the Europa Lander Science Definition Team (SDT) and documented in the Europa Lander Study 2016 Report released in February of 2017. Since holding a Mission Concept Review (MCR) in June of 2017, HQ directed the study team to further explore the architectural trade space with a goal of reducing the mission cost. Based on the results of that study, in December of 2017 HQ directed the study team to focus on biosignature science and shift to a Direct-to-Earth communication architecture. The currently envisioned Europa Lander would launch on an SLS Block 1B as early as Fall of 2026 into a DV-Earth-Mars-Gravity Assist (DVEMGA) trajectory, arriving in the Jovian system as early as mid-2031. The baseline design of the integrated flight system includes a Carrier Stage, a Deorbit Vehicle composed of a Deorbit Stage consisting of a solid rocket motor (SRM), an MSL-like sky-crane Descent Stage, and a Lander which accommodates the instrument suite. The Lander would be powered by primary batteries over a 20+ day surface mission. The science goals envisioned by the SDT for biosignature science require three samples taken from a depth of 10 cm, a depth chosen to ensure minimal radiation processing of the potential biomarkers. Mission challenges include the large launch mass, unknown terrain topography, surface composition and materials properties, the high radiation environment, and complying with the stringent planetary protection requirements. The mission concept uses a strategy of early risk reduction and overlapping requirements to provide robustness to harsh and uncertain environments. Early risk reduction efforts are aimed at maturing technologies associated with the sampling system, the intelligent landing system, high specific energy batteries, low mass and power motor controllers, and a thermal sterilization system.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] EUROPA LANDER TRAJECTORY DESIGN: CASE STUDIES FOR THE DIRECT-TO-EARTH ARCHITECTURE
    Campagnola, Stefano
    McElrath, Tim
    Zimmer, Aline
    Landau, Damon
    SPACEFLIGHT MECHANICS 2019, VOL 168, PTS I-IV, 2019, 168 : 531 - 546
  • [2] Mission Concept for a Europa Lander
    Dooley, Jennifer
    2018 IEEE AEROSPACE CONFERENCE, 2018,
  • [3] Science Goals and Mission Architecture of the Europa Lander Mission Concept
    Hand, K. P.
    Phillips, C. B.
    Murray, A.
    Garvin, J. B.
    Maize, E. H.
    Gibbs, R. G.
    Reeves, G.
    San Martin, A. M.
    Tan-Wang, G. H.
    Krajewski, J.
    Hurst, K.
    Crum, R.
    Kennedy, B. A.
    McElrath, T. P.
    Gallon, J. C.
    Sabahi, D.
    Thurman, S. W.
    Goldstein, B.
    Estabrook, P.
    Lee, S. W.
    Dooley, J. A.
    Brinckerhoff, W. B.
    Edgett, K. S.
    German, C. R.
    Hoehler, T. M.
    Horst, S. M.
    Lunine, J., I
    Paranicas, C.
    Nealson, K.
    Smith, D. E.
    Templeton, A. S.
    Russell, M. J.
    Schmidt, B.
    Christner, B.
    Ehlmann, B.
    Hayes, A.
    Rhoden, A.
    Willis, P.
    Yingst, R. A.
    Craft, K.
    Cameron, M. E.
    Nordheim, T.
    Pitesky, J.
    Scully, J.
    Hofgartner, J.
    Sell, S. W.
    Barltrop, K. J.
    Izraelevitz, J.
    Brandon, E. J.
    Seong, J.
    PLANETARY SCIENCE JOURNAL, 2022, 3 (01):
  • [4] Europa Lander Mission
    Zelenyi, L. M.
    Korablev, O. I.
    Vorobyova, E. A.
    Martynov, M.
    Akim, E. L.
    Zakharov, A. V.
    PALEONTOLOGICAL JOURNAL, 2012, 46 (09) : 1088 - 1089
  • [5] A Direct Detection LiDAR Detector for the Europa Lander Concept
    Punjiya, Meera
    Ryu, Kevin
    Aull, Brian
    McIntosh, K. Alexander
    Donlon, Kevan
    Brattain, Michael
    Pretorius, Hermanus
    Nothern, Denis
    Pestana, Noah
    Karolyshyn, Thomas
    Mihallari, Jorgo
    Kranefeld, Zachary
    Duerr, Erik
    Gregory, Matt
    Katake, Anup
    San Martin, Alejandro Miguel
    ADVANCED PHOTON COUNTING TECHNIQUES XVI, 2022, 12089
  • [6] ARIEL: Autonomous Excavation Site Selection for Europa Lander Mission Concept
    Ono, Masahiro
    Doran, Gary
    Langert, Erik
    Wagstaff, Kiri
    Kim, David Inkyu
    Gaut, Aaron
    Estlin, Tara
    Jain, Abhi
    Cameron, Marissa
    Muliere, David
    Roberts, Erik
    Kriechbaum, Kristopher
    Reeves, Glenn
    2020 IEEE AEROSPACE CONFERENCE (AEROCONF 2020), 2020,
  • [7] A Model-Based Approach for Europa Lander Mission Concept Exploration
    Lattimore, Myra
    Karban, Robert
    Gomez, Marie Piette
    Bovre, Emilee
    Reeves, Glenn E.
    2022 IEEE AEROSPACE CONFERENCE (AERO), 2022,
  • [8] Analog environments for a Europa lander mission
    Lorenz, Ralph D.
    Gleeson, Damhnait
    Prieto-Ballesteros, Olga
    Gomez, Felipe
    Hand, Kevin
    Bulat, Sergey
    ADVANCES IN SPACE RESEARCH, 2011, 48 (04) : 689 - 696
  • [9] Cadmus: A Europa lander concept
    Thompson, Robert
    Francis, Scott
    Olsen, Randy
    Parsons, Michael
    Coffman, Robbie
    Braun, Robert
    2005 IEEE Aerospace Conference, Vols 1-4, 2005, : 209 - 220
  • [10] Europa Lander mission and the context of international cooperation
    Zelenyi, L.
    Korablev, O.
    Martynov, M.
    Popov, G. A.
    Blanc, M.
    Lebreton, J. P.
    Pappalardo, R.
    Clark, K.
    Fedorova, A.
    Akim, E. L.
    Simonov, A. A.
    Lomakin, I. V.
    Sukhanov, A.
    Eismont, N.
    ADVANCES IN SPACE RESEARCH, 2011, 48 (04) : 615 - 628