A modular invariance property of multivariable trace functions for regular vertex operator algebras

被引:19
|
作者
Krauel, Matthew [1 ]
Miyamoto, Masahiko [2 ]
机构
[1] Univ Cologne, Math Inst, Cologne, Germany
[2] Univ Tsukuba, Inst Math, Tsukuba, Ibaraki 305, Japan
基金
日本学术振兴会; 欧洲研究理事会;
关键词
Vertex operator algebras; Commutant; Modular forms;
D O I
10.1016/j.jalgebra.2015.07.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an SL2(Z)-invariance property of multivariable trace functions on modules for a regular VOA. Applying this result, we provide a proof of the inversion transformation formula for Siegel theta series. As another application, we show that if V is a simple regular VOA containing a simple regular subVOA U whose commutant U-c is simple, regular, and satisfies (U-c)(c) = U, then all simple U-modules appear in some simple V-module. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:124 / 142
页数:19
相关论文
共 50 条