A parallel algorithm for finding the constrained Voronoi diagram of line segments in the plane

被引:0
|
作者
Chin, F [1 ]
Lee, DT
Wang, CA
机构
[1] Univ Hong Kong, Dept CSIS, Hong Kong, Peoples R China
[2] Northwestern Univ, Dept ECE, Evanston, IL 60208 USA
[3] Mem Univ Newfoundland, Dept Comp Sci, St John, NF A1C 5S7, Canada
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we present an O(1/alpha log n) (for any constant 0 less than or equal to alpha less than or equal to 1) time parallel algorithm for constructing the constrained Voronoi diagram of a set L of n non-crossing line segments in E-2, using O(n(1+alpha)) processors on a CREW PRAM model. This parallel algorithm also constructs the constrained Delaunay triangulation of L in the same time and processor bound by the duality. Our method established the conversions from finding the constrained Voronoi diagram L to finding the Voronoi diagram of S, the endpoint set of L. We further showed that this conversion can be done in O(log n) time using n processors in CREW PRAM model. The complexity of the conversion implies that ally improvement of the complexity for finding the Voronoi diagram of a point set will automatically bring the improvement of the one in question.
引用
收藏
页码:231 / 240
页数:10
相关论文
共 50 条