A Jacobi method for signal subspace computation

被引:0
|
作者
Paul, S
Gotze, J
机构
关键词
subspace methods; singular value decomposition; Jacobi method; parallel architecture; optimization on manifolds; Lie groups;
D O I
10.1117/12.279499
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Jacobi method for singular value decomposition is well-suited for parallel architectures. Its application to signal subspace computations is well known. Basically the subspace spanned by singular vectors of large singular values are separated from subspace spanned by those of small singular values. The Jacobi algorithm computes the singular values and the corresponding vectors in random order. This requires sorting the result after convergence of the algorithm to select the signal subspace. A modification of the Jacobi method based on a linear objective function merges the sorting into the SVD-algorithm at little extra cost. In fact, the complexity of the diagonal processor cells in a triangular array get slightly larger. In this paper we present these extensions, in particular the modified algorithm for computing the rotation angles and give an example of its usefulness for subspace separation.
引用
收藏
页码:409 / 417
页数:9
相关论文
共 50 条
  • [1] The Jacobi method: A tool for computation and control
    Helmke, U
    Huper, K
    [J]. SYSTEMS AND CONTROL IN THE TWENTY-FIRST CENTURY, 1997, 22 : 205 - 228
  • [2] A subspace method for the computation of the GCD of polynomials
    Qiu, WZ
    Hua, YB
    AbedMeraim, K
    [J]. AUTOMATICA, 1997, 33 (04) : 741 - 743
  • [3] INVARIANT SUBSPACE METHOD FOR EIGENVALUE COMPUTATION
    STADNICKI, DJ
    VANNESS, JE
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 1993, 8 (02) : 572 - 580
  • [4] ON AN APPROXIMATE SUBSPACE METHOD FOR EIGENFILTER COMPUTATION
    FUHRMANN, DR
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1986, 34 (01): : 205 - 207
  • [6] The signal subspace decomposition method for extracting harmonic signal
    Wang, Dengwei
    Lu, Yinghua
    [J]. PROCEEDINGS OF 2006 IEEE INFORMATION THEORY WORKSHOP, 2006, : 714 - +
  • [7] Hexagonal Loop Tiling for Jacobi Computation Optimization Method
    Qu, Bin
    Liu, Song
    Zhang, Zeng-Yuan
    Ma, Jie
    Wu, Wei-Guo
    [J]. Ruan Jian Xue Bao/Journal of Software, 2024, 35 (08): : 3721 - 3738
  • [8] Revisiting the (block) Jacobi subspace rotation method for the symmetric eigenvalue problem
    Saad, Yousef
    [J]. NUMERICAL ALGORITHMS, 2023, 92 (01) : 917 - 944
  • [9] Revisiting the (block) Jacobi subspace rotation method for the symmetric eigenvalue problem
    Yousef Saad
    [J]. Numerical Algorithms, 2023, 92 : 917 - 944
  • [10] IMPROVED SIGNAL SUBSPACE METHOD FOR EP ESTIMATION
    DAVILA, CE
    WELCH, AJ
    RYLANDER, HG
    [J]. PROCEEDINGS OF THE ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, PTS 1-4, 1988, : 1175 - 1176