Method to Characterize Potential UAS Encounters Using Open Source Data

被引:0
|
作者
Weinert, Andrew [1 ]
机构
[1] MIT, Lincoln Lab, Lexington, MA 02420 USA
关键词
unmanned aerial vehicles; drones; aerospace control; simulation; geospatial analysis; open source software;
D O I
10.3390/aerospace7110158
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
As unmanned aerial systems (UASs) increasingly integrate into the US national airspace system, there is an increasing need to characterize how commercial and recreational UASs may encounter each other. To inform the development and evaluation of safety critical technologies, we demonstrate a methodology to analytically calculate all potential relative geometries between different UAS operations performing inspection missions. This method is based on a previously demonstrated technique that leverages open source geospatial information to generate representative unmanned aircraft trajectories. Using open source data and parallel processing techniques, we performed trillions of calculations to estimate the relative horizontal distance between geospatial points across sixteen locations.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] Generating Representative Small UAS Trajectories using Open Source Data
    Weinert, Andrew
    Underhill, Ngaire
    2018 IEEE/AIAA 37TH DIGITAL AVIONICS SYSTEMS CONFERENCE (DASC), 2018, : 195 - 204
  • [2] Data to science: an open-source online platform for managing, visualizing, and publishing UAS data
    Jung, Jinha
    Fei, Songlin
    Tuinstra, Mitch
    Yang, Yang
    Wang, Diane
    Song, Carol
    Gillan, Jeffrey
    Bhandari, Mahendra
    Ibrahim, Amir
    Zhao, Lan
    Swetnam, Tyson
    Barker, Bryan
    Jung, Minyoung
    Hancock, Ben
    AUTONOMOUS AIR AND GROUND SENSING SYSTEMS FOR AGRICULTURAL OPTIMIZATION AND PHENOTYPING IX, 2024, 13053
  • [3] DataCite as a Potential Source for Open Data Indicators
    Dudek, Jonathan
    Mongeon, Philippe
    Bergmans, Josephine
    17TH INTERNATIONAL CONFERENCE ON SCIENTOMETRICS & INFORMETRICS (ISSI2019), VOL II, 2019, : 2037 - 2042
  • [4] MAPPING OF THE GLOBAL WIND ENERGY POTENTIAL USING OPEN SOURCE GIS DATA
    Grassi, Stefano
    Veronesi, Fabio
    Schenkel, Roland
    Peier, Christian
    Neukom, Jonatan
    Volkwein, Stephan
    Raubal, Martin
    Hurni, Lorenz
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ENERGY & ENVIRONMENT: BRINGING TOGETHER ENGINEERING AND ECONOMICS, 2015, : 647 - 653
  • [5] An Approach to Characterize the Security of Open-Source Functions using LSP
    Pereira, Jose D'Ahruzzo
    Vieira, Marco
    2023 IEEE 34TH INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING, ISSRE, 2023, : 137 - 147
  • [6] OPEN-SOURCE FRAMEWORK FOR CREATION OF CANOPY HEIGHT MODELS FROM UAS- LIDAR DATA
    Arriola-Valverde, Sergio
    Rimolo-Donadio, Renato
    Somarriba-Chavez, Eduardo
    Saenz-Vargas, Eduardo
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 4254 - 4257
  • [7] Dimensional modeling of HIV data using open source
    Otine, Charles D.
    Kucel, Samuel B.
    Trojer, Lena
    World Academy of Science, Engineering and Technology, 2010, 63 : 156 - 161
  • [8] Satellite Data Classification Using Open Source Support
    S. Biswal
    A. Ghosh
    R. Sharma
    P. K. Joshi
    Journal of the Indian Society of Remote Sensing, 2013, 41 : 523 - 530
  • [9] Satellite Data Classification Using Open Source Support
    Biswal, S.
    Ghosh, A.
    Sharma, R.
    Joshi, P. K.
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2013, 41 (03) : 523 - 530
  • [10] A Research and Analysis Method of Open Source Threat Intelligence Data
    Liu, Ruyue
    Zhao, Ziping
    Sun, Chengjun
    Yang, Xiaoyu
    Gong, Xiaoli
    Zhang, Jin
    DATA SCIENCE, PT 1, 2017, 727 : 352 - 363