K-ORBIT CLOSURES AND BARBASCH-EVENS-MAGYAR VARIETIES

被引:0
|
作者
Escobar, Laura [1 ]
Wyser, Benjamin J.
Yong, Alexander [2 ]
机构
[1] Washington Univ St Louis, Dept Math & Stat, St Louis, MO 63130 USA
[2] Univ Illinois, Dept Math, Urbana, IL USA
关键词
flag variety; K-orbit; Barbasch-Evens-Magyar variety; moment polytope; clans; CONVEXITY PROPERTIES; SCHUBERT VARIETIES; SMALL RESOLUTIONS; BRUHAT ORDER; SINGULARITIES; GEOMETRY; LOCUS;
D O I
10.2140/pjm.2022.320.103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define the Barbasch-Evens-Magyar varieties. We show they are iso-morphic to the smooth varieties defined in [D. Barbasch and S. Evens 1994] that map generically finitely to symmetric orbit closures, thereby giving resolutions of singularities in certain cases. Our definition parallels P. Magyar's [1998] construction of the Bott-Samelson varieties [H. C. Hansen 1973; M. Demazure 1974]. From this alternative viewpoint, one deduces a graphical description in type A, stratification into closed subvarieties of the same kind, and determination of the torus-fixed points. Moreover, we explain how these manifolds inherit a natural symplectic structure with Hamiltonian torus action. We then express the moment polytope in terms of the moment polytope of a Bott-Samelson variety.
引用
收藏
页码:103 / 132
页数:31
相关论文
共 31 条