STOCHASTIC SOLUTIONS TO THE NON-LINEAR SCHRODINGER EQUATION IN OPTICAL FIBER

被引:3
|
作者
Almutairi, Abdulwahab [1 ]
机构
[1] Qassim Univ, Coll Sci & Arts Unaizah, Sch Math, Qasim, Saudi Arabia
来源
THERMAL SCIENCE | 2022年 / 26卷 / SpecialIssue1期
关键词
Schrodinger problem; unified solver; optical fiber; geometric distribution and exponential distribution; SOLITON-SOLUTIONS;
D O I
10.2298/TSCI22S1185A
中图分类号
O414.1 [热力学];
学科分类号
摘要
The non-linear random Schrodinger equation via geometric distribution and exponential distribution is considered. We carry out the unified solver technique to obtain some new random solutions. The statistical distributions are utilized to show the dispersion random input. The reported random solutions are so important in fiber optics and their applications. The expectation for the random solutions are drawn to show the behaviour of solutions.
引用
收藏
页码:185 / 190
页数:6
相关论文
共 50 条
  • [1] STOCHASTIC SOLUTIONS TO THE NON-LINEAR SCHRODINGER EQUATION IN OPTICAL FIBER
    Almutairi, Abdulwahab
    THERMAL SCIENCE, 2022, 26 : S185 - S190
  • [2] NON-LINEAR SCHRODINGER-EQUATION, POTENTIAL NON-LINEAR SCHRODINGER-EQUATION AND SOLITON-SOLUTIONS
    BOITI, M
    LADDOMADA, C
    PEMPINELLI, F
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1982, 68 (03): : 236 - 248
  • [3] DECAY AND SCATTERING OF SOLUTIONS OF A NON-LINEAR SCHRODINGER EQUATION
    LIN, JE
    STRAUSS, WA
    JOURNAL OF FUNCTIONAL ANALYSIS, 1978, 30 (02) : 245 - 263
  • [4] TURBULENT SOLUTIONS TO THE NON-LINEAR SCHRODINGER-EQUATION
    DUBOIS, DF
    ROSE, HA
    NICHOLSON, DR
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (08): : 997 - 997
  • [5] SOLITON SOLUTIONS OF THE DERIVATIVE NON-LINEAR SCHRODINGER EQUATION
    KAWATA, T
    KOBAYASHI, N
    INOUE, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1979, 46 (03) : 1008 - 1015
  • [6] Ergodicity for a weakly damped stochastic non-linear Schrodinger equation
    Debussche, A
    Odasso, C
    JOURNAL OF EVOLUTION EQUATIONS, 2005, 5 (03) : 317 - 356
  • [7] STABILITY OF COMPLEX SOLUTIONS OF THE NON-LINEAR SCHRODINGER-EQUATION
    INFELD, E
    ZIEMKIEWICZ, J
    ACTA PHYSICA POLONICA A, 1981, 59 (03) : 255 - 275
  • [8] Structure of the set of positive solutions of a non-linear Schrodinger equation
    Figueiredo, Giovany M.
    Santos Junior, Joo R.
    Suarez, Antonio
    ISRAEL JOURNAL OF MATHEMATICS, 2018, 227 (01) : 485 - 505
  • [9] ON CERTAIN EXACT-SOLUTIONS FOR THE SCHRODINGER NON-LINEAR EQUATION
    MOSKALYUK, SS
    UKRAINSKII FIZICHESKII ZHURNAL, 1981, 26 (06): : 1045 - 1046
  • [10] Resonant solutions of the non-linear Schrodinger equation with periodic potential
    Duaibes, Arein
    Karpeshina, Yulia
    NONLINEARITY, 2024, 37 (09)