Construction of recurrent bivariate fractal interpolation surfaces and computation of their box-counting dimension

被引:84
|
作者
Bouboulis, P.
Dalla, Leoni
Drakopoulos, V. [1 ]
机构
[1] Univ Athens, Dept Informat & Telecommun, Athens 15784, Greece
[2] Univ Athens, Dept Math, Athens 15784, Greece
关键词
fractal interpolation functions; IFS; RIFS; fractals; bivariate fractal interpolation surfaces; box-counting dimension; Minkowski dimension;
D O I
10.1016/j.jat.2006.01.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recurrent bivariate fractal interpolation surfaces (RBFISs) generalise the notion of affine fractal interpolation surfaces (FISs) in that the iterated system of transformations used to construct such a surface is non-affine. The resulting limit surface is therefore no longer self-affine nor self-similar. Exact values for the box-counting dimension of the RBFISs are obtained. Finally, a methodology to approximate any natural surface using RBFISs is outlined. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:99 / 117
页数:19
相关论文
共 50 条