An efficient derivative free family of fourth order methods for solving systems of nonlinear equations

被引:21
|
作者
Sharma, Janak Raj [1 ]
Arora, Himani [1 ]
Petkovic, Miodrag S. [2 ]
机构
[1] St Longowal Inst Engn & Technol, Dept Math, Longowal 148106, Punjab, India
[2] Univ Nis, Dept Math, Fac Elect Engn, Nish 18000, Serbia
关键词
Systems of nonlinear equations; Derivative-free methods; Traub-Steffensen method; Order of convergence; Computational efficiency; CONVERGENCE; MEMORY;
D O I
10.1016/j.amc.2014.02.103
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a derivative free two-step family of fourth order methods for solving systems of nonlinear equations using the well-known Traub-Steffensen method in the first step. In order to determine the local convergence order, we apply the first-order divided difference operator for functions of several variables and direct computation by Taylor's expansion. Computational efficiencies of the methods of new family are considered and compared with existing methods of similar structure. It is showed that the new family is especially efficient in solving large systems. Four numerical examples are given to compare the proposed methods with existing methods and to confirm the theoretical results. (C) 2014 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:383 / 393
页数:11
相关论文
共 50 条
  • [1] New efficient derivative free family of seventh-order methods for solving systems of nonlinear equations
    Narang, Mona
    Bhatia, Saurabh
    Kanwar, Vinay
    NUMERICAL ALGORITHMS, 2017, 76 (01) : 283 - 307
  • [2] New efficient derivative free family of seventh-order methods for solving systems of nonlinear equations
    Mona Narang
    Saurabh Bhatia
    Vinay Kanwar
    Numerical Algorithms, 2017, 76 : 283 - 307
  • [3] A family of second derivative free fourth order continuation method for solving nonlinear equations
    Behl, R.
    Maroju, P.
    Motsa, S. S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 318 : 38 - 46
  • [4] Second-derivative free methods of third and fourth order for solving nonlinear equations
    Sharma, J. R.
    Guha, R. K.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (01) : 163 - 170
  • [5] Extended Seventh Order Derivative Free Family of Methods for Solving Nonlinear Equations
    Behl, Ramandeep
    Argyros, Ioannis K.
    Mallawi, Fouad Othman
    Alharbi, Sattam
    MATHEMATICS, 2023, 11 (03)
  • [6] A simple yet efficient derivative free family of seventh order methods for systems of nonlinear equations
    Sharma J.R.
    Arora H.
    SeMA Journal, 2016, 73 (1) : 59 - 75
  • [7] Efficient derivative-free numerical methods for solving systems of nonlinear equations
    Janak Raj Sharma
    Himani Arora
    Computational and Applied Mathematics, 2016, 35 : 269 - 284
  • [8] Efficient derivative-free numerical methods for solving systems of nonlinear equations
    Sharma, Janak Raj
    Arora, Himani
    COMPUTATIONAL & APPLIED MATHEMATICS, 2016, 35 (01): : 269 - 284
  • [9] On an efficient family of derivative free three-point methods for solving nonlinear equations
    Wang, Xiaofeng
    Dzunic, Jovana
    Zhang, Tie
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) : 1749 - 1760
  • [10] A family of derivative-free methods for solving nonlinear equations
    Kumar S.
    Sharma J.R.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2021, 67 (2) : 355 - 367