Learning to Deblur Adaptive Optics Retinal Images

被引:3
|
作者
Lazareva, Anfisa [1 ]
Asad, Muhammad [2 ]
Slabaugh, Greg [2 ]
机构
[1] City Univ London, Dept Elect & Elect Engn, London, England
[2] City Univ London, Dept Comp Sci, London, England
来源
关键词
Adaptive optics imaging; Deconvolution; Image restoration; Regression; Random forest; BLIND DECONVOLUTION;
D O I
10.1007/978-3-319-59876-5_55
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a blind deconvolution approach for reconstruction of Adaptive Optics (AO) high-resolution retinal images. The framework employs Random Forest to learn the mapping of retinal images onto the space of blur kernels expressed in terms of Zernike coefficients. A specially designed feature extraction technique allows inference of blur kernels for retinal images of various quality, taken at different locations of the retina. This model is validated on synthetically generated images as well as real AO high-resolution retinal images. The obtained results on the synthetic data showed an average root-mean-square error of 0.0051 for the predicted blur kernels and 0.0464 for the reconstructed images, compared to the ground truth (GT). The assessment of the reconstructed AO retinal images demonstrated that the contrast, sharpness and visual quality of the images have been significantly improved.
引用
收藏
页码:497 / 506
页数:10
相关论文
共 50 条
  • [1] Deconvolution of adaptive optics retinal images
    Christou, JC
    Roorda, A
    Williams, DR
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2004, 21 (08) : 1393 - 1401
  • [2] Learning to Deblur Images with Exemplars
    Pan, Jinshan
    Ren, Wenqi
    Hu, Zhe
    Yang, Ming-Hsuan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (06) : 1412 - 1425
  • [3] Adaptive landweber method to deblur images
    Liang, L
    Xu, YC
    IEEE SIGNAL PROCESSING LETTERS, 2003, 10 (05) : 129 - 132
  • [4] Segmentation of Retinal Arteries in Adaptive Optics Images
    Lerme, Nicolas
    Rossant, Florence
    Bloch, Isabelle
    Paques, Michel
    Koch, Edouard
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 574 - 579
  • [5] Learning Good Regions to Deblur Images
    Hu, Zhe
    Yang, Ming-Hsuan
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 115 (03) : 345 - 362
  • [6] Learning Good Regions to Deblur Images
    Zhe Hu
    Ming-Hsuan Yang
    International Journal of Computer Vision, 2015, 115 : 345 - 362
  • [7] Semi-supervised generative adversarial learning for denoising adaptive optics retinal images
    Wang, Shidan
    Li, Kaiwen
    Yin, Qi
    Ren, Ji
    Zhang, Jie
    BIOMEDICAL OPTICS EXPRESS, 2024, 15 (03) : 1437 - 1452
  • [8] Marginal blind deconvolution of adaptive optics retinal images
    Blanco, L.
    Mugnier, L. M.
    OPTICS EXPRESS, 2011, 19 (23): : 23227 - 23239
  • [9] Unsupervised registration of Adaptive Optics retinal images in SLO fundus images
    Fezzani, Riadh
    Cornic, Philippe
    Odlund, Erika Boyenga
    Plyer, Aurelien
    Le Besnerais, Guy
    Kulcsar, Caroline
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2014, 55 (13)
  • [10] Hybrid Transformer for Lesion Segmentation on Adaptive Optics Retinal Images
    Liu, Jianfei
    Li, Joanne
    Wolde, Amday
    Cukras, Catherine
    Tam, Johnny
    MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033