Variational formulation and efficient implementation for solving the tempered fractional problems

被引:21
|
作者
Deng, Weihua [1 ]
Zhang, Zhijiang [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Gansu Key Lab Appl Math & Complex Syst, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
implementation; tempered Levy flight; tempered trap; variational formulation; DIFFUSION EQUATION; NUMERICAL-METHODS; GALERKIN METHOD; SPECTRAL METHOD; SPACE;
D O I
10.1002/num.22254
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Because of the finiteness of the life span and boundedness of the physical space, the more reasonable or physical choice is the tempered power-law instead of pure power-law for the CTRW model in characterizing the waiting time and jump length of the motion of particles. This paper focuses on providing the variational formulation and efficient implementation for solving the corresponding deterministic/macroscopic models, including the space tempered fractional equation and time tempered fractional equation. The convergence, numerical stability, and a series of variational equalities are theoretically proved. And the theoretical results are confirmed by numerical experiments.
引用
收藏
页码:1224 / 1257
页数:34
相关论文
共 50 条
  • [1] An efficient approximate method for solving fractional variational problems
    Khader, M. M.
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (5-6) : 1643 - 1649
  • [2] VARIATIONAL METHODS FOR KIRCHHOFF TYPE PROBLEMS WITH TEMPERED FRACTIONAL DERIVATIVE
    Nyamoradi, Nemat
    Zhou, Yong
    Ahmad, Bashir
    Alsaedi, Ahmed
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [3] Formulation of Hamiltonian equations for fractional variational problems
    Muslih, SI
    Baleanu, D
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2005, 55 (06) : 633 - 642
  • [4] Approximate technique for solving fractional variational problems
    Haleh Tajadodi
    Nematollah Kadkhoda
    Hossein Jafari
    Mustafa Inc
    Pramana, 2020, 94
  • [5] Approximate technique for solving fractional variational problems
    Tajadodi, Haleh
    Kadkhoda, Nematollah
    Jafari, Hossein
    Inc, Mustafa
    PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):
  • [6] A numerical technique for solving fractional variational problems
    Khader, M. M.
    Hendy, A. S.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (10) : 1281 - 1289
  • [7] Variational formulation for fractional inhomogeneous boundary value problems
    Taibai Fu
    Zhoushun Zheng
    Beiping Duan
    BIT Numerical Mathematics, 2020, 60 : 1203 - 1219
  • [8] A general finite element formulation for fractional variational problems
    Agrawal, Om P.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) : 1 - 12
  • [9] Variational formulation for fractional hyperbolic problems in the theory of viscoelasticity
    Bravo-Castillero, Julian
    Lopez Rios, Luis Fernando
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (05):
  • [10] Variational formulation for fractional hyperbolic problems in the theory of viscoelasticity
    Julián Bravo-Castillero
    Luis Fernando López Ríos
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73