Universal dynamics on complex networks

被引:4
|
作者
Wang, Wen-Xu [1 ]
Huang, Liang [1 ]
Lai, Ying-Cheng [1 ,2 ]
机构
[1] Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA
[2] Arizona State Univ, Dept Phys & Astron, Tempe, AZ 85287 USA
关键词
SYNCHRONIZATION; COMMUNITY;
D O I
10.1209/0295-5075/87/18006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We uncover a class of universal dynamics on weighted complex networks. In particular, we find that by incorporating a universal weighting scheme into real-world networks, the topological details of various real-world networks, whether biological, physical, technological, or social, have little influence on typical dynamical processes such as synchronization, epidemic spreading, and percolation. This striking finding is demonstrated using a large number of real-world networks and substantiated by analytic considerations. These findings make possible generic and robust control strategies for a variety of dynamical processes on complex networks. Copyright (C) EPLA, 2009
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Universal framework for reconstructing complex networks and node dynamics from discrete or continuous dynamics data
    Zhang, Yan
    Guo, Yu
    Zhang, Zhang
    Chen, Mengyuan
    Wang, Shuo
    Zhang, Jiang
    [J]. PHYSICAL REVIEW E, 2022, 106 (03)
  • [2] Complex delay dynamics on railway networks from universal laws to realistic modelling
    Monechi, Bernardo
    Gravino, Pietro
    Di Clemente, Riccardo
    Servedio, Vito D. P.
    [J]. EPJ DATA SCIENCE, 2018, 7
  • [3] Complex delay dynamics on railway networks from universal laws to realistic modelling
    Bernardo Monechi
    Pietro Gravino
    Riccardo Di Clemente
    Vito D. P. Servedio
    [J]. EPJ Data Science, 7
  • [4] Universal level dynamics of complex systems
    Shukla, Pragya
    [J]. Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 59 (5 pt A):
  • [5] Universal resilience patterns in complex networks
    Jianxi Gao
    Baruch Barzel
    Albert-László Barabási
    [J]. Nature, 2016, 530 : 307 - 312
  • [6] Universal scaling of distances in complex networks
    Holyst, JA
    Sienkiewicz, J
    Fronczak, A
    Fronczak, P
    Suchecki, K
    [J]. PHYSICAL REVIEW E, 2005, 72 (02)
  • [7] Universal level dynamics of complex systems
    Shukla, P
    [J]. PHYSICAL REVIEW E, 1999, 59 (05): : 5205 - 5213
  • [8] Universal resilience patterns in complex networks
    Gao, Jianxi
    Barzel, Baruch
    Barabasi, Albert-Laszlo
    [J]. NATURE, 2016, 530 (7590) : 307 - 312
  • [9] Networks - The universal language of the complex world
    Bonchev, D. G.
    [J]. ADVANCES IN COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2005, VOLS 4 A & 4 B, 2005, 4A-4B : 772 - 775
  • [10] Complex Networks Dynamics
    Bertelle, Cyrille
    Aziz-Alaoui, M. A.
    [J]. CSNDD 2012 - INTERNATIONAL CONFERENCE ON STRUCTURAL NONLINEAR DYNAMICS AND DIAGNOSIS, 2012, 1