Machine learning techniques to predict the compressive strength of concrete

被引:20
|
作者
Silva, Priscila F. S. [1 ]
Moita, Gray Farias [2 ]
Arruda, Vanderci Fernandes [3 ]
机构
[1] Ctr Fed Educ Tecnol Minas Gerais CEFET MG, Belo Horizonte, MG, Brazil
[2] Postgrad Programme Math & Computat Modelling, Belo Horizonte, MG, Brazil
[3] CEFET MG, Postgrad Programme Math & Computat Modelling, Belo Horizonte, MG, Brazil
关键词
Compressive strength of concrete; Artificial neural network; Support vector machine; Random forest;
D O I
10.23967/j.rimni.2020.09.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Conventional concrete is the most common material used in civil construction, and its behavior is highly nonlinear, mainly because of its heterogeneous characteristics. Compressive strength is one of the most critical parameters when designing concrete structures, and it is widely used by engineers. This parameter is usually determined through expensive laboratory tests, causing a loss of resources, materials, and time. However, artificial intelligence and its numerous applications are examples of new technologies that have been used successfully in scientific applications. Artificial neural network (ANN) and support vector machine (SVM) models are generally used to resolve engineering problems. In this work, three models are designed, implemented, and tested to determine the compressive strength of concrete: random forest, SVM, and ANNs. Pre-processing data, statistical methods, and data visualization techniques are also employed to gain a better understanding of the database. Finally, the results obtained show high efficiency and are compared with other works, which also captured the compressive strength of the concrete.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] Comparison of machine learning techniques to predict compressive strength of concrete
    Dutta, Susom
    Samui, Pijush
    Kim, Dookie
    COMPUTERS AND CONCRETE, 2018, 21 (04): : 463 - 470
  • [2] Artificial Intelligence and Machine Learning Techniques to Predict the Compressive Strength of Concrete at High Temperature
    Thenmozhi, S.
    Ramanjaneyulu, Batchu
    Chukka, Naga Dheeraj Kumar Reddy
    Chavan, Sayali S.
    Siddartha, Chintala
    Gorade, Swapnil Balkrishna
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2023, 44 (08): : 1376 - 1384
  • [3] Advanced Machine Learning Techniques for Predicting Concrete Compressive Strength
    Tak, Mohammad Saleh Nikoopayan
    Feng, Yanxiao
    Mahgoub, Mohamed
    INFRASTRUCTURES, 2025, 10 (02)
  • [4] Comparison of Machine Learning Techniques for the Prediction of Compressive Strength of Concrete
    Chopra, Palika
    Sharma, Rajendra Kumar
    Kumar, Maneek
    Chopra, Tanuj
    ADVANCES IN CIVIL ENGINEERING, 2018, 2018
  • [5] Compressive strength of concrete material using machine learning techniques
    Paudel, Satish
    Pudasaini, Anil
    Shrestha, Rajesh Kumar
    Kharel, Ekta
    CLEANER ENGINEERING AND TECHNOLOGY, 2023, 15
  • [6] Prediction of compressive strength of geopolymer concrete using machine learning techniques
    Gupta, Tanuja
    Rao, Meesala Chakradhara
    STRUCTURAL CONCRETE, 2022, 23 (05) : 3073 - 3090
  • [7] Different machine learning approaches to predict the compressive strength of composite cement concrete
    Md. Nafiuzzaman
    Tausif Ibn Jakir
    Israt Jahan Aditi
    Ahsanul Kabir
    Khan Abid Ahsan
    Journal of Building Pathology and Rehabilitation, 2025, 10 (2)
  • [8] Developing machine learning models to predict the fly ash concrete compressive strength
    Abhinav Kapil
    Koteswaraarao Jadda
    Arya Anuj Jee
    Asian Journal of Civil Engineering, 2024, 25 (7) : 5505 - 5523
  • [9] Compressive strength prediction of fly ash concrete by using machine learning techniques
    Suhaila Khursheed
    J. Jagan
    Pijush Samui
    Sanjay Kumar
    Innovative Infrastructure Solutions, 2021, 6
  • [10] Compressive Strength Prediction of Fly Ash Concrete Using Machine Learning Techniques
    Jiang, Yimin
    Li, Hangyu
    Zhou, Yisong
    BUILDINGS, 2022, 12 (05)