Universal bounds for global solutions of a forced porous medium equation

被引:6
|
作者
Winkler, M [1 ]
机构
[1] Rhein Westfal TH Aachen, Dept Math, D-52056 Aachen, Germany
关键词
nonlinear diffusion; a priori estimates;
D O I
10.1016/j.na.2004.02.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that in a smooth bounded domain Omega subset of R-n, n greater than or equal to 2 all global nonnegative solutions of u(t) - Deltau(m) = u(p) with zero boundary data are uniformly bounded in Omega x (tau, infinity) by a constant depending on Omega, p and tau but not on u(0), provided that 1 < m < p < [(n + 1)/(n - 1)]m. Furthermore, we prove an a priori bound in L-infinity(Omega x (0, infinity)) depending on parallel tou(0)parallel to(Linfinity(Omega)) under the optimal condition 1 < m < p < [(n + 2)/(n - 2)]m. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:349 / 362
页数:14
相关论文
共 50 条