On the complexity of algebraic numbers.

被引:51
|
作者
Adamczewski, B
Bugeaud, Y
Luca, F
机构
[1] Univ Paris 11, UMR 8623, Rech Informat Lab, F-91405 Orsay, France
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Morelia 58180, Michoacan, Mexico
[3] Univ Strasbourg 1, UFR Math, F-67084 Strasbourg, France
关键词
D O I
10.1016/j.crma.2004.04.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On the complexity of algebraic numbers. Let b greater than or equal to 2 be an integer. We prove that real numbers whose b-ary expansion satisfies some given, simple, combinatorial condition are transcendental. This implies that the b-ary expansion of any algebraic irrational number cannot be generated by a finite automaton.
引用
收藏
页码:11 / 14
页数:4
相关论文
共 50 条