Random Green matrices: From proximity resonances to Anderson localization

被引:57
|
作者
Rusek, M [1 ]
Mostowski, J
Orlowski, A
机构
[1] Ctr Etud Saclay, SPAM, DRECAM, DSM,Commissariat Energie Atom, F-91191 Gif Sur Yvette, France
[2] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland
来源
PHYSICAL REVIEW A | 2000年 / 61卷 / 02期
关键词
D O I
10.1103/PhysRevA.61.022704
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Universal properties of the spectra of certain matrices describing multiple elastic scattering of scalar waves from a collection of randomly distributed point-like objects are discovered. The elements of these matrices are equal to the free-space Green's function calculated for the differences between positions of any pair of scatterers. A striking physical interpretation within Breit-Wigner's model of the single scatterer is elaborated. Proximity resonances and Anderson localization are considered as two illustrative examples.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Random Green matrices: From proximity resonances to Anderson localization
    Rusek, Marian
    Mostowski, Jan
    Orlowski, Arkadiusz
    Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 61 (02): : 227041 - 227046
  • [2] From proximity resonances to Anderson localization
    Oriowski, A
    Rusek, M
    PHOTONIC CRYSTALS AND LIGHT LOCALIZATION IN THE 21ST CENTURY, 2001, 563 : 509 - 518
  • [3] ANDERSON LOCALIZATION AND PROXIMITY EFFECT
    FUKUYAMA, H
    MAEKAWA, S
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1986, 55 (06) : 1814 - 1817
  • [4] Anderson localization in Euclidean random matrices -: art. no. 153104
    Ciliberti, S
    Grigera, TS
    Martín-Mayor, V
    Parisi, G
    Verrocchio, P
    PHYSICAL REVIEW B, 2005, 71 (15)
  • [5] The Anderson localization transition and eigenfunction multifractality in an ensemble of ultrametric random matrices
    Fyodorov, Yan V.
    Ossipov, Alexander
    Rodriguez, Alberto
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
  • [6] Lyapunov exponents, one-dimensional Anderson localization and products of random matrices
    Comtet, Alain
    Texier, Christophe
    Tourigny, Yves
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (25)
  • [7] Stark resonances for random potentials of Anderson type
    Bentosela, F
    Briet, P
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1999, 71 (05): : 497 - 538
  • [8] From Anderson localization on random regular graphs to many-body localization
    Tikhonov, K. S.
    Mirlin, A. D.
    ANNALS OF PHYSICS, 2021, 435
  • [9] RANDOM PHOTONICS True Anderson localization
    Conti, Claudio
    NATURE PHOTONICS, 2013, 7 (01) : 5 - 6
  • [10] Localization for random CMV matrices
    Zhu, Xiaowen
    JOURNAL OF APPROXIMATION THEORY, 2024, 298