Bayesian Estimation of the True Score Multitrait-Multimethod Model With a Split-Ballot Design
被引:4
|
作者:
Helm, Jonathan Lee
论文数: 0引用数: 0
h-index: 0
机构:
San Diego State Univ, 153 Life Sci Bldg,5500 Campanile Dr, San Diego, CA 92182 USASan Diego State Univ, 153 Life Sci Bldg,5500 Campanile Dr, San Diego, CA 92182 USA
Helm, Jonathan Lee
[1
]
论文数: 引用数:
h-index:
机构:
Castro-Schilo, Laura
[2
]
Zavala-Rojas, Diana
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pompeu Fabra, Barcelona, SpainSan Diego State Univ, 153 Life Sci Bldg,5500 Campanile Dr, San Diego, CA 92182 USA
Zavala-Rojas, Diana
[3
]
DeCastellarnau, Anna
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pompeu Fabra, Barcelona, SpainSan Diego State Univ, 153 Life Sci Bldg,5500 Campanile Dr, San Diego, CA 92182 USA
DeCastellarnau, Anna
[3
]
Oravecz, Zita
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, University Pk, PA 16802 USASan Diego State Univ, 153 Life Sci Bldg,5500 Campanile Dr, San Diego, CA 92182 USA
Oravecz, Zita
[4
]
机构:
[1] San Diego State Univ, 153 Life Sci Bldg,5500 Campanile Dr, San Diego, CA 92182 USA
This article examines whether Bayesian estimation with minimally informed prior distributions can alleviate the estimation problems often encountered with fitting the true score multitrait-multimethod structural equation model with split-ballot data. In particular, the true score multitrait-multimethod structural equation model encounters an empirical underidentification when (a) latent variable correlations are homogenous, and (b) fitted to data from a 2-group split-ballot design; an understudied case of empirical underidentification due to a planned missingness (i.e., split-ballot) design. A Monte Carlo simulation and 3 empirical examples showed that Bayesian estimation performs better than maximum likelihood (ML) estimation. Therefore, we suggest using Bayesian estimation with minimally informative prior distributions when estimating the true score multitrait-multimethod structural equation model with split-ballot data. Furthermore, given the increase in planned missingness designs in psychological research, we also suggest using Bayesian estimation as a potential alternative to ML estimation for analyses using data from planned missingness designs.