Bayesian Estimation of the True Score Multitrait-Multimethod Model With a Split-Ballot Design

被引:4
|
作者
Helm, Jonathan Lee [1 ]
Castro-Schilo, Laura [2 ]
Zavala-Rojas, Diana [3 ]
DeCastellarnau, Anna [3 ]
Oravecz, Zita [4 ]
机构
[1] San Diego State Univ, 153 Life Sci Bldg,5500 Campanile Dr, San Diego, CA 92182 USA
[2] SAS Inst Inc, Cary, NC USA
[3] Univ Pompeu Fabra, Barcelona, Spain
[4] Penn State Univ, University Pk, PA 16802 USA
关键词
Bayesian; estimation; multitrait-multimethod; true score model; CONFIRMATORY FACTOR-ANALYSIS; STRUCTURAL EQUATION MODELS; MISSING DATA DESIGNS; IMPROPER SOLUTIONS; MATRIX; MTMM; IDENTIFICATION; METAANALYSIS; RELIABILITY; ROBUSTNESS;
D O I
10.1080/10705511.2017.1378103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article examines whether Bayesian estimation with minimally informed prior distributions can alleviate the estimation problems often encountered with fitting the true score multitrait-multimethod structural equation model with split-ballot data. In particular, the true score multitrait-multimethod structural equation model encounters an empirical underidentification when (a) latent variable correlations are homogenous, and (b) fitted to data from a 2-group split-ballot design; an understudied case of empirical underidentification due to a planned missingness (i.e., split-ballot) design. A Monte Carlo simulation and 3 empirical examples showed that Bayesian estimation performs better than maximum likelihood (ML) estimation. Therefore, we suggest using Bayesian estimation with minimally informative prior distributions when estimating the true score multitrait-multimethod structural equation model with split-ballot data. Furthermore, given the increase in planned missingness designs in psychological research, we also suggest using Bayesian estimation as a potential alternative to ML estimation for analyses using data from planned missingness designs.
引用
收藏
页码:71 / 85
页数:15
相关论文
共 50 条