Invertebrate colonization during leaf litter decomposition was studied at the 2nd order of Yanase River, Iruma city, Saitama, Japan from November 13, 2002 to May 20, 2003. Two different mesh sizes (1 and 5 mm) of litter-bags were used to evaluate the decomposition of leaf litter of Sakura (Prunus lannesiana), bags were placed equally in riffle (water flow velocity: 0.2-0.6 m s(-1)) and pool (water flow velocity: 0.04-0.06 m s(-1)). Mass loss and invertebrates in the litter-bags were monitored at interval between 1 and 3 weeks, and the invertebrates were classified based on their functional feeding group. Among the invertebrates found inside the litter-bags, the case-bearing shredder Lepidostomatidae was the most dominant invertebrates and they were the early colonizer that appeared about 3 months after the litter-bags immersion. In absence or low number of leaf-shredders, the decomposition rates in 1 and 5 mm litter mesh bags followed the exponential (or first-order) decay kinetic (R (2): 0.72-0.92). However, the presence of a large number of leaf-shredders in 1 mm litter-bags caused an acceleration of decomposition process; that even resulted faster mass loss than the loss from the 5 mm mesh bags placed in riffle area (0.030 day(-1) vs. 0.011 day(-1)). Our results shows the importance of using different mesh sizes of litter-bags in decomposition study, which is applicable to the experiment in lotic or lentic ecosystem. Using smaller mesh size of litter-bags can provide information on how significant the effect of detritus feeders on the decomposition process, while the bigger mesh size can represent better the natural decomposition process when a large number detritus feeders is present in the smaller mesh size of litter-bags.