Correcting the Site Frequency Spectrum for Divergence-Based Ascertainment

被引:10
|
作者
Kern, Andrew D.
机构
[1] Department of Biological Sciences, Dartmouth College, Hanover, NH
来源
PLOS ONE | 2009年 / 4卷 / 04期
关键词
ULTRACONSERVED ELEMENTS; POPULATION-GENETICS; SELECTION; POLYMORPHISM;
D O I
10.1371/journal.pone.0005152
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Comparative genomics based on sequenced referenced genomes is essential to hypothesis generation and testing within population genetics. However, selection of candidate regions for further study on the basis of elevated or depressed divergence between species leads to a divergence-based ascertainment bias in the site frequency spectrum within selected candidate loci. Here, a method to correct this problem is developed that obtains maximum-likelihood estimates of the unascertained allele frequency distribution using numerical optimization. I show how divergence-based ascertainment may mimic the effects of natural selection and offer correction formulae for performing proper estimation into the strength of selection in candidate regions in a maximum-likelihood setting.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Divergence-Based Introgression Polarization
    Forsythe, Evan S.
    Sloan, Daniel B.
    Beilstein, Mark A.
    GENOME BIOLOGY AND EVOLUTION, 2020, 12 (04): : 463 - 478
  • [2] DEEP DIVERGENCE-BASED CLUSTERING
    Kampffmeyer, M.
    Lokse, S.
    Bianchi, F. M.
    Livi, L.
    Salberg, A. -B.
    Jenssen, R.
    2017 IEEE 27TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2017,
  • [3] Fault detection of a vibration mechanism by spectrum classification with a divergence-based kernel
    Ishigaki, T.
    Higuchi, T.
    Watanabe, K.
    IET SIGNAL PROCESSING, 2010, 4 (05) : 518 - 529
  • [4] Divergence-based medial surfaces
    Bouix, S
    Siddiqi, K
    COMPUTER VISION - ECCV 2000, PT I, PROCEEDINGS, 2000, 1842 : 603 - 618
  • [5] Divergence-Based Vector Quantization
    Villmann, Thomas
    Haase, Sven
    NEURAL COMPUTATION, 2011, 23 (05) : 1343 - 1392
  • [6] Divergence-based multifocuses image fusion
    Department of Electronics and Information, Huazhong Univ. of Sci. and Technol., Wuhan 430074, China
    不详
    Huazhong Ligong Daxue Xuebao, 2007, 4 (7-10):
  • [7] Deep divergence-based approach to clustering
    Kampffmeyer, Michael
    Lokse, Sigurd
    Bianchi, Filippo M.
    Livi, Lorenzo
    Salberg, Arnt-Borre
    Jenssen, Robert
    NEURAL NETWORKS, 2019, 113 : 91 - 101
  • [8] Divergence-based tests for model diagnostic
    Esteban, M. D.
    Hobza, T.
    Morales, D.
    Marhuenda, Y.
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (13) : 1702 - 1710
  • [9] Divergence-based Odor Source Declaration
    Cabrita, Goncalo
    Marques, Lino
    2013 9TH ASIAN CONTROL CONFERENCE (ASCC), 2013,
  • [10] Divergence-based feature selection for separate classes
    Zhang, Yishi
    Li, Shujuan
    Wang, Teng
    Zhang, Zigang
    NEUROCOMPUTING, 2013, 101 : 32 - 42