Multiple Imputations, tool for the estimation of missing data in regression modeling

被引:0
|
作者
Miguel Mejia-Giraldo, Luis [1 ]
Fernando Restrepo-Betancur, Luis [2 ]
机构
[1] Univ Gran Colombia, Fac Ingn, Grp Invest GIDA, Campus La Santa Maria, Armenia, Colombia
[2] Univ Antioquia, Fac Ciencias Agr, Grp Invest GRICA, Calle 67 53-108, Medellin, Colombia
来源
TEMAS AGRARIOS | 2019年 / 24卷 / 01期
关键词
Analysis of Variance; Coefficient of determination; Equation; Sum of Squares; Validation;
D O I
10.21897/rta.v24i1.1780
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
In recent years there has been an increase in research on missing data problems, with multiple imputation being a fundamental alternative; where data sets often present complexities that are currently difficult to manage appropriately in the probability framework, but relatively simple to deal with imputation; For this reason, this article describes a series of practical aspects to apply this methodology in the case of carbon capture modeling for Colombia, based on the World Bank databases including missing data reaching R-2 of 79.2988%, highlighting that when estimating said data and recalculating the respective model, a greater R-2 is evidenced, being of 94.76901%, which evidences a substantial improvement of the respective multiple linear regression model as such.
引用
收藏
页码:66 / 73
页数:8
相关论文
共 50 条
  • [1] Multiple imputations for missing data: a simulation with epidemiological data
    Nunes, Luciana Neves
    Klueck, Mariza Machado
    Guimaraes Fachel, Jandyra Maria
    [J]. CADERNOS DE SAUDE PUBLICA, 2009, 25 (02): : 268 - 278
  • [2] Missing data, part 5. Introduction to multiple imputations
    Pham, Tra My
    Pandis, Nikolaos
    White, Ian R.
    [J]. AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2022, 162 (04) : 581 - 583
  • [3] Multiple Imputations Particle Filters: Convergence and Performance Analyses for Nonlinear State Estimation With Missing Data
    Zhang, Xiao-Ping
    Khwaja, Ahmed Shaharyar
    Luo, Ji-An
    Housfater, Alon Shalev
    Anpalagan, Alagan
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2015, 9 (08) : 1536 - 1547
  • [4] Inverse probability weighting or multiple imputations for nonmonotone missing data?
    Ross, Rachael
    Cole, Stephen
    Westreich, Daniel
    Daniels, Julie
    Stringer, Jeffrey
    Edwards, Jessie
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2022, 31 : 3 - 3
  • [5] Linking missing data to study outcomes using multiple imputations
    Ibrahim, Khadija
    [J]. CANADIAN JOURNAL OF PUBLIC HEALTH-REVUE CANADIENNE DE SANTE PUBLIQUE, 2015, 106 (02): : E82 - E82
  • [6] Extreme learning machine for missing data using multiple imputations
    Sovilj, Dusan
    Eirola, Emil
    Miche, Yoan
    Bjork, Kaj-Mikael
    Nian, Rui
    Akusok, Anton
    Lendasse, Amaury
    [J]. NEUROCOMPUTING, 2016, 174 : 220 - 231
  • [7] Linking missing data to study outcomes using multiple imputations
    Khadija Ibrahim
    [J]. Canadian Journal of Public Health, 2015, 106 : e82 - e82
  • [8] Nonlinear Dimensionality Reduction With Missing Data Using Parametric Multiple Imputations
    de Bodt, Cyril
    Mulders, Dounia
    Verleysen, Michel
    Lee, John Aldo
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (04) : 1166 - 1179
  • [9] REGRESSION ESTIMATION OF MISSING DATA
    OGRADY, KE
    [J]. BEHAVIOR RESEARCH METHODS & INSTRUMENTATION, 1982, 14 (03): : 359 - 360
  • [10] Re: “Linking missing data to study outcomes using multiple imputations”
    Gita Wahi
    Katholiki Georgiades
    [J]. Canadian Journal of Public Health, 2015, 106 : e83 - e83