Schwarzschild black hole, vacuum C-metric when m=0 and Rindler metric

被引:0
|
作者
Wang, YC
机构
来源
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, vacuum C-metric when m = 0 is derived from the metric of a Schwarzschild black hole if its mass and location approach to infinity in an appropriate way. Furthermore, by using coordinate transformation in which there is no acceleration, vacuum C-metric when m = 0 is transformed to Rindler metric. The result shows that an infinitesimal neighborhood of the horizon of an infinite Schwarzschild black hole is a Rindler space-time, and the acceleration in the Rindler space-time can arise from the in finite Schwarzschild black hole.
引用
收藏
页码:666 / 670
页数:5
相关论文
共 50 条
  • [1] THE C-METRIC WITH M=0, E=0
    BONNOR, WB
    GENERAL RELATIVITY AND GRAVITATION, 1984, 16 (03) : 269 - 281
  • [2] Metric of the superposition of a Schwarzschild black hole and a semi-infinite rod: Vacuum C metric
    Wang, YC
    CHINESE PHYSICS LETTERS, 1997, 14 (12): : 881 - 884
  • [3] Vacuum C metric and the metric of two superposed Schwarzschild black holes
    Yongcheng, W.
    Physical Review D Particles, Fields, Gravitation and Cosmology, 55 (12):
  • [4] Vacuum C metric and the metric of two superposed Schwarzschild black holes
    Wang, YC
    PHYSICAL REVIEW D, 1997, 55 (12) : 7977 - 7979
  • [5] THE SOURCES OF THE VACUUM C-METRIC
    BONNOR, WB
    GENERAL RELATIVITY AND GRAVITATION, 1983, 15 (06) : 535 - 551
  • [6] On the Black Hole Acceleration in the C-Metric Space-Time
    Carneiro, F. L.
    Ulhoa, S. C.
    Maluf, J. W.
    GRAVITATION & COSMOLOGY, 2022, 28 (04): : 352 - 361
  • [7] On the Black Hole Acceleration in the C-Metric Space-Time
    F. L. Carneiro
    S. C. Ulhoa
    J. W. Maluf
    Gravitation and Cosmology, 2022, 28 : 352 - 361
  • [8] THE INTERPRETATION OF THE C-METRIC - THE VACUUM CASE
    CORNISH, FHJ
    UTTLEY, WJ
    GENERAL RELATIVITY AND GRAVITATION, 1995, 27 (04) : 439 - 454
  • [9] Massless Dirac particles in the vacuum C-metric
    Bini, Donato
    Bittencourt, Eduardo
    Geralico, Andrea
    CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (21)
  • [10] Polymer Schwarzschild black hole: An effective metric
    Ben Achour, J.
    Lamy, F.
    Liu, H.
    Noui, K.
    EPL, 2018, 123 (02)