Terminal-pairability in complete bipartite graphs with non-bipartite demands Edge-disjoint paths in complete bipartite graphs

被引:0
|
作者
Colucci, Lucas [2 ]
Erdos, Peter L. [1 ]
Gyori, Ervin [1 ,2 ]
Mezei, Tamas Robert [1 ,2 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, Realtanoda U 13-15, H-1053 Budapest, Hungary
[2] Cent European Univ, Dept Math & Its Applicat, Nador U 9, H-1051 Budapest, Hungary
关键词
Edge-disjoint paths; Terminal-pairability; Complete bipartite graph;
D O I
10.1016/j.tcs.2018.12.007
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate the terminal-pairability problem in the case when the base graph is a complete bipartite graph, and the demand graph is a (not necessarily bipartite) multigraph on the same vertex set. In computer science, this problem is known as the edge-disjoint paths problem. We improve the lower bound on the maximum value of Delta (D) which still guarantees that the demand graph D has a realization in K-n,K-n. We also solve the extremal problem on the number of edges, i.e., we determine the maximum number of edges which guarantees that a demand graph is realizable in K-n,K-n. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:16 / 25
页数:10
相关论文
共 50 条
  • [1] Terminal-pairability in complete bipartite graphs
    Colucci, Lucas
    Erdos, Peter L.
    Gyori, Ervin
    Mezei, Tarnas Robert
    DISCRETE APPLIED MATHEMATICS, 2018, 236 : 459 - 463
  • [2] The terminal-pairability problem in complete bipartite graphs
    Lv, Zequn
    Lu, Mei
    DISCRETE APPLIED MATHEMATICS, 2021, 291 : 64 - 67
  • [3] Edge-disjoint spanners of complete bipartite graphs
    Laforest, C
    Liestman, AL
    Shermer, TC
    Sotteau, D
    DISCRETE MATHEMATICS, 2001, 234 (1-3) : 65 - 76
  • [4] A DECOMPOSITION OF COMPLETE BIPARTITE GRAPHS INTO EDGE-DISJOINT SUBGRAPHS WITH STAR COMPONENTS
    EGAWA, Y
    URABE, M
    FUKUDA, T
    NAGOYA, S
    DISCRETE MATHEMATICS, 1986, 58 (01) : 93 - 95
  • [5] Complete bipartite factorisations by complete bipartite graphs
    Martin, N
    DISCRETE MATHEMATICS, 1997, 167 : 461 - 480
  • [6] Complete bipartite factorisations by complete bipartite graphs
    Martin, N.
    Discrete Mathematics, 1997, 167-168 : 461 - 480
  • [7] Orthogonal double cover of Complete Bipartite Graph by disjoint union of complete bipartite graphs
    El-Serafi, S.
    El-Shanawany, R.
    Shabana, H.
    AIN SHAMS ENGINEERING JOURNAL, 2015, 6 (02) : 657 - 660
  • [8] GraPacking Bipartite Graphs with Covers of Complete Bipartite Graphs
    Chalopin, Jeremie
    Paulusma, Daniel
    ALGORITHMS AND COMPLEXITY, PROCEEDINGS, 2010, 6078 : 276 - +
  • [9] Packing bipartite graphs with covers of complete bipartite graphs
    Chalopin, Jeremie
    Paulusma, Daniel
    DISCRETE APPLIED MATHEMATICS, 2014, 168 : 40 - 50
  • [10] Edge-disjoint Open Trails in Complete Bipartite Multigraphs
    Cichacz, Sylwia
    Goerlich, Agnieszka
    GRAPHS AND COMBINATORICS, 2010, 26 (02) : 207 - 214