Towards Scalable and Robust Sum-Product Networks

被引:1
|
作者
Correia, Alvaro H. C. [1 ]
de Campos, Cassio P. [1 ]
机构
[1] Eindhoven Univ Technol, Eindhoven, Netherlands
来源
关键词
Sum-Product Networks; Robustness;
D O I
10.1007/978-3-030-35514-2_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sum-Product Networks (SPNs) and their credal counterparts are machine learning models that combine good representational power with tractable inference. Yet they often have thousands of nodes which result in high processing times. We propose the addition of caches to the SPN nodes and show how this memoisation technique reduces inference times in a range of experiments. Moreover, we introduce class-selective SPNs, an architecture that is suited for classification tasks and enables efficient robustness computation in Credal SPNs. We also illustrate how robustness estimates relate to reliability through the accuracy of the model, and how one can explore robustness in ensemble modelling.
引用
收藏
页码:409 / 422
页数:14
相关论文
共 50 条
  • [1] Sum-Product Networks for Robust Automatic Speaker Identification
    Nicolson, Aaron
    Paliwal, Kuldip K.
    [J]. INTERSPEECH 2020, 2020, : 1516 - 1520
  • [2] Robust Analysis of MAP Inference in Selective Sum-Product Networks
    Llerena, Julissa Villanueva
    Maua, Denis Deratani
    [J]. PROCEEDINGS OF THE ELEVENTH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITIES: THEORIES AND APPLICATIONS (ISIPTA 2019), 2019, 103 : 430 - 440
  • [3] Residual Sum-Product Networks
    Ventola, Fabrizio
    Stelzner, Karl
    Molina, Alejandro
    Kersting, Kristian
    [J]. INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 545 - 556
  • [4] Sum-Product Networks: A Survey
    Sanchez-Cauce, Raquel
    Paris, Iago
    Javier Diez, Francisco
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (07) : 3821 - 3839
  • [5] Survey of sum-product networks
    Dai, Qi
    Liu, Jian-Wei
    [J]. Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2024, 41 (11): : 1965 - 1990
  • [6] Robustifying sum-product networks
    Maua, Denis Deratani
    Conaty, Diarmaid
    Cozman, Fabio Gagliardi
    Poppenhaeger, Katja
    de Campos, Cassio Polpo
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2018, 101 : 163 - 180
  • [7] Sum-Product Autoencoding: Encoding and Decoding Representations Using Sum-Product Networks
    Vergari, Antonio
    Peharz, Robert
    Di Mauro, Nicola
    Molina, Alejandro
    Kersting, Kristian
    Esposito, Floriana
    [J]. THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 4163 - 4170
  • [8] Bayesian Learning of Sum-Product Networks
    Trapp, Martin
    Peharz, Robert
    Ge, Hong
    Pernkopf, Franz
    Ghahramani, Zoubin
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [9] Dual Sum-Product Networks Autoencoding
    Wang, Shengsheng
    Zhang, Hang
    Liu, Jiayun
    Yu, Qiang-Yuan
    [J]. KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT (KSEM 2018), PT I, 2018, 11061 : 377 - 387
  • [10] On Theoretical Properties of Sum-Product Networks
    Peharz, Robert
    Tschiatschek, Sebastian
    Pernkopf, Franz
    Domingos, Pedro
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 744 - 752