Distributed-order fractional kinetics

被引:0
|
作者
Sokolov, IM
Chechkin, AV
Klafter, J
机构
[1] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[2] Kharkov Phys & Technol Inst, Ctr Nat Sci, Inst Theoret Phys, UA-61108 Kharkov, Ukraine
[3] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Chem, IL-69978 Tel Aviv, Israel
来源
ACTA PHYSICA POLONICA B | 2004年 / 35卷 / 04期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fractional diffusion equations are widely used to describe anomalous diffusion processes where the characteristic displacement scales as a power of time. For processes lacking such scaling the corresponding description may be given by distributed-order equations. In the present paper we consider different forms of distributed-order fractional kinetic equations and investigate the effects described by different classes of such equations. In particular, the equations describing accelerating and decelerating subdiffusion, as well as those describing accelerating and decelerating superdiffusion are presented.
引用
收藏
页码:1323 / 1341
页数:19
相关论文
共 50 条
  • [1] NEUTRON POINT KINETICS MODEL WITH A DISTRIBUTED-ORDER FRACTIONAL DERIVATIVE
    Godinez, F. A.
    Fernandez-Anaya, G.
    Quezada-Garcia, S.
    Quezada-Tellez, L. A.
    Polo-Labarrios, M. A.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024,
  • [2] On a fractional distributed-order oscillator
    Atanackovic, TM
    Budincevic, M
    Pilipovic, S
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (30): : 6703 - 6713
  • [3] ON THE CONTROLLABILITY OF DISTRIBUTED-ORDER FRACTIONAL SYSTEMS WITH DISTRIBUTED DELAYS
    He, Bin-Bin
    Chen, YangQuan
    Kou, Chun-Hai
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2017, VOL 9, 2017,
  • [4] Distributed-order fractional diffusions on bounded domains
    Meerschaert, Mark M.
    Nane, Erkan
    Vellaisamy, P.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 379 (01) : 216 - 228
  • [5] Applications of Distributed-Order Fractional Operators: A Review
    Ding, Wei
    Patnaik, Sansit
    Sidhardh, Sai
    Semperlotti, Fabio
    [J]. ENTROPY, 2021, 23 (01) : 1 - 42
  • [6] FRACTIONAL DIFFUSION EQUATION WITH DISTRIBUTED-ORDER CAPUTO DERIVATIVE
    Kubica, Adam
    Ryszewska, Katarzyna
    [J]. JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2019, 31 (02) : 195 - 243
  • [7] Pontryagin Maximum Principle for Distributed-Order Fractional Systems
    Ndairou, Faical
    Torres, Delfim F. M.
    [J]. MATHEMATICS, 2021, 9 (16)
  • [8] Distributed-order time-fractional wave equations
    Frederik Broucke
    Ljubica Oparnica
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [9] Distributed-order time-fractional wave equations
    Broucke, Frederik
    Oparnica, Ljubica
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (01):
  • [10] Fractional pseudo-spectral methods for distributed-order fractional PDEs
    Kharazmi, Ehsan
    Zayernouri, Mohsen
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (6-7) : 1340 - 1361