Source separation on astrophysical data sets from the WMAP satellite

被引:0
|
作者
Patanchon, G [1 ]
Delabrouille, J
Cardoso, JFO
机构
[1] Univ British Columbia, Vancouver, BC V5Z 1M9, Canada
[2] CNRS, PCC, UMR 7553, Paris, France
[3] APC, Paris, France
[4] CNRS, LTCI, UMR 5141, Paris, France
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents and discusses the application of blind source separation to astrophysical data obtained with the WMAP satellite. Blind separation permits to identify and isolate a component compatible with the Cosmic Microwave Background, and to measure both its spatial power spectrum and its emission law. Both are found to be compatible with the present concordance cosmological model. This application confirms the usefulness of ICA in cosmological applications.
引用
收藏
页码:1221 / 1228
页数:8
相关论文
共 50 条
  • [1] Source separation of astrophysical ice mixtures
    Igual, J
    Llinares, R
    Salazar, A
    [J]. INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, PROCEEDINGS, 2006, 3889 : 368 - 375
  • [2] Astrophysical source separation using particle filters
    Costagli, M
    Kuruoglu, EE
    Ahmed, A
    [J]. INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, 2004, 3195 : 930 - 937
  • [3] Source separation techniques applied to astrophysical maps
    Salerno, E
    Tonazzini, A
    Kuruoglu, EE
    Bedini, L
    Herranz, D
    Baccigalupi, C
    [J]. KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 3, PROCEEDINGS, 2004, 3215 : 426 - 432
  • [4] An informed source separation of astrophysical ice analogs
    Igual, Jorge
    Llinares, Raul
    [J]. DIGITAL SIGNAL PROCESSING, 2007, 17 (05) : 947 - 964
  • [5] A Blind Identification and Source Separation Method Based on Subspace Intersections for Hyperspectral Astrophysical Data
    Boulais, Axel
    Deville, Yannick
    Berne, Olivier
    [J]. LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION (LVA/ICA 2017), 2017, 10169 : 367 - 380
  • [6] Mining knowledge in astrophysical massive data sets
    Brescia, Massimo
    Longo, Giuseppe
    Pasian, Fabio
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2010, 623 (02): : 845 - 849
  • [7] A new algorithm in blind source separation for high dimensional data sets such as MEG data
    Taghia, Jalil
    Doostari, Mohammad Ali
    Taghia, Jalal
    [J]. PROCEEDINGS OF THE WSEAS INTERNATIONAL CONFERENCE ON CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING: SELECTED TOPICS ON CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, 2007, : 329 - +
  • [8] Separation of anomalous and synchrotron emissions using WMAP polarization data
    Miville-Deschenes, M. -A.
    Ysard, N.
    Lavabre, A.
    Ponthieu, N.
    Macias-Perez, J. F.
    Aumont, J.
    Bernard, J. P.
    [J]. ASTRONOMY & ASTROPHYSICS, 2008, 490 (03): : 1093 - 1102
  • [9] Reliability of satellite data sets
    Christy, JR
    Spencer, RW
    [J]. SCIENCE, 2003, 301 (5636) : 1046 - 1047
  • [10] A Generalized Canonical Correlation Analysis Based Method for Blind Source Separation from Related Data Sets
    Karhunen, Juha
    Hao, Tele
    Ylipaavalniemi, Jarkko
    [J]. 2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,