Greenberger-Horne-Zeilinger paradoxes for many qudits

被引:75
|
作者
Cerf, NJ
Massar, S
Pironio, S
机构
[1] Free Univ Brussels, Ecole Polytech, B-1050 Brussels, Belgium
[2] Free Univ Brussels, Serv Phys Theor, B-1050 Brussels, Belgium
关键词
Greenberger-Horne-Zeilinger paradoxes - Pauli matrices - Quantum error correcting codes - Qudits;
D O I
10.1103/PhysRevLett.89.080402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct Greenberger-Horne-Zeilinger (GHZ) contradictions for three or more parties sharing an entangled state, the dimension of each subsystem being an even integer d. The simplest example that goes beyond the standard GHZ paradox (three qubits) involves five ququats (d=4). We then examine the criteria that a GHZ paradox must satisfy in order to be genuinely M partite and d dimensional.
引用
收藏
页码:1 / 080402
页数:4
相关论文
共 50 条
  • [1] Greenberger-Horne-Zeilinger theorem for N qudits
    Ryu, Junghee
    Lee, Changhyoup
    Zukowski, Marek
    Lee, Jinhyoung
    PHYSICAL REVIEW A, 2013, 88 (04):
  • [2] Multisetting Greenberger-Horne-Zeilinger paradoxes
    Tang, Weidong
    Yu, Sixia
    Oh, C. H.
    PHYSICAL REVIEW A, 2017, 95 (01)
  • [3] Greenberger-Horne-Zeilinger paradoxes with symmetric multiport beam splitters
    Zukowski, M
    Kaszlikowski, D
    PHYSICAL REVIEW A, 1999, 59 (05): : 3200 - 3203
  • [4] Greenberger-Horne-Zeilinger Paradoxes from Qudit Graph States
    Tang, Weidong
    Yu, Sixia
    Oh, C. H.
    PHYSICAL REVIEW LETTERS, 2013, 110 (10)
  • [5] NMR Greenberger-Horne-Zeilinger states
    Laflamme, R
    Knill, E
    Zurek, WH
    Catasti, P
    Mariappan, SVS
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 356 (1743): : 1941 - 1947
  • [6] Multisetting Greenberger-Horne-Zeilinger theorem
    Ryu, Junghee
    Lee, Changhyoup
    Yin, Zhi
    Rahaman, Ramij
    Angelakis, Dimitris G.
    Lee, Jinhyoung
    Zukowski, Marek
    PHYSICAL REVIEW A, 2014, 89 (02):
  • [7] General proof of the Greenberger-Horne-Zeilinger theorem
    Chen, ZQ
    PHYSICAL REVIEW A, 2004, 70 (03): : 032109 - 1
  • [8] Variations on the theme of the Greenberger-Horne-Zeilinger proof
    Vaidman, L
    FOUNDATIONS OF PHYSICS, 1999, 29 (04) : 615 - 630
  • [9] Optimal Verification of Greenberger-Horne-Zeilinger States
    Li, Zihao
    Han, Yun-Guang
    Zhu, Huangjun
    PHYSICAL REVIEW APPLIED, 2020, 13 (05)
  • [10] A quantitative witness for Greenberger-Horne-Zeilinger entanglement
    Christopher Eltschka
    Jens Siewert
    Scientific Reports, 2