State of health and charge measurements in lithium-ion batteries using mechanical stress

被引:194
|
作者
Cannarella, John [1 ]
Arnold, Craig B. [1 ]
机构
[1] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
关键词
Mechanical stress; Lithium-ion battery; State of charge (SOC); State of health (SOH); Battery management system; Solid electrolyte interface (SEI); CAPACITY FADE; VOLUME CHANGE; HIGH-POWER; GRAPHITE; CELLS; SEPARATOR; DEGRADATION; MANAGEMENT; EVOLUTION; ELECTRODE;
D O I
10.1016/j.jpowsour.2014.07.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite the fundamental importance of state of health (SOH) and state of charge (SOC) measurement to lithium-ion battery systems, the determination of these parameters is challenging and remains an area of active research. Here we propose a novel method of SOH/SOC determination using mechanical measurements. We present the results of long term aging studies in which we observe stack stress to be linearly related to cell SOH for cells aged with different cycling parameters. The observed increases in stack stress are attributed to irreversible volumetric expansion of the electrodes. We discuss the use of stress measurements for SOC determination, which offers the advantage of being more sensitive to SOC than voltage as well as the ability to measure SOC in the presence of self discharge. Finally we present a simple model to explain the linear nature of the observed stress-SOH relationship. The inherent simplicity of the mechanical measurements and their relationships to SOH and SOC presented in this paper offer potential utility for the improvement of existing battery management systems. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:7 / 14
页数:8
相关论文
共 50 条
  • [1] State of charge and state of health estimation of Lithium-Ion batteries
    Buchman, Attila
    Lung, Claudiu
    2018 IEEE 24TH INTERNATIONAL SYMPOSIUM FOR DESIGN AND TECHNOLOGY IN ELECTRONIC PACKAGING (SIITME), 2018, : 382 - 385
  • [2] Inline state of health estimation of lithium-ion batteries using state of charge calculation
    Sepasi, Saeed
    Ghorbani, Reza
    Liaw, Bor Yann
    JOURNAL OF POWER SOURCES, 2015, 299 : 246 - 254
  • [3] State of charge and state of health estimation strategies for lithium-ion batteries
    Wang, Nanlan
    Xia, Xiangyang
    Zeng, Xiaoyong
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2023, 18 : 443 - 448
  • [4] Coupling Effect of State-of-Health and State-of-Charge on the Mechanical Integrity of Lithium-Ion Batteries
    Xu, J.
    Jia, Y.
    Liu, B.
    Zhao, H.
    Yu, H.
    Li, J.
    Yin, S.
    EXPERIMENTAL MECHANICS, 2018, 58 (04) : 633 - 643
  • [5] State-of-Charge Dependence of Mechanical Response of Lithium-Ion Batteries: A Result of Internal Stress
    Li, Wei
    Xia, Yong
    Zhu, Juner
    Luo, Hailing
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (07) : A1537 - A1546
  • [6] Coupling Effect of State-of-Health and State-of-Charge on the Mechanical Integrity of Lithium-Ion Batteries
    J. Xu
    Y. Jia
    B. Liu
    H. Zhao
    H. Yu
    J. Li
    S. Yin
    Experimental Mechanics, 2018, 58 : 633 - 643
  • [7] Monitoring State of Health and State of Charge of Lithium-Ion Batteries Using Machine Learning Techniques
    Varshney, Ayush
    Singh, Aman
    Pradeep, Alka Ann
    Joseph, Anu
    Gopakumar, P.
    PROCEEDINGS OF 2021 5TH INTERNATIONAL CONFERENCE ON CONDITION ASSESSMENT TECHNIQUES IN ELECTRICAL SYSTEMS (IEEE CATCON 2021), 2021, : 22 - 27
  • [8] State of Charge Estimation for Lithium-ion Batteries Based on Stress Measurement
    Yu, Chenchen
    Dai, Haifeng
    2016 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2016,
  • [9] State of Charge and Health Estimation For Lithium-Ion Batteries Using Recursive Least Squares
    Wei, Jingwen
    Chen, Chunlin
    2020 5TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (ICARM 2020), 2020, : 686 - 689
  • [10] Modelling the State of Charge of Lithium-ion batteries
    Das, Ridoy
    Wang, Yue
    Putrus, Ghanim
    Busawon, Krishna
    2018 53RD INTERNATIONAL UNIVERSITIES POWER ENGINEERING CONFERENCE (UPEC), 2018,