Utilizing Population Controls in Rare-Variant Case-Parent Association Tests

被引:13
|
作者
Jiang, Yu [1 ]
Satten, Glen A. [2 ]
Han, Yujun [3 ]
Epstein, Michael P. [4 ]
Heinzen, Erin L. [3 ]
Goldstein, David B. [3 ]
Allen, Andrew S. [1 ,3 ]
机构
[1] Duke Univ, Dept Biostat & Bioinformat, Durham, NC 27710 USA
[2] Ctr Dis Control & Prevent, Atlanta, GA 30333 USA
[3] Duke Univ, Ctr Human Genome Variat, Sch Med, Durham, NC 27708 USA
[4] Emory Univ, Dept Human Genet, Sch Med, Atlanta, GA 30322 USA
关键词
COMMON DISEASES; SEQUENCE; FRAMEWORK; RISK;
D O I
10.1016/j.ajhg.2014.04.014
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
There is great interest in detecting associations between human traits and rare genetic variation. To address the low power implicit in single-locus tests of rare genetic variants, many rare-variant association approaches attempt to accumulate information across a gene, often by taking linear combinations of single-locus contributions to a statistic. Using the right linear combination is key an optimal test will up-weight true causal variants, down-weight neutral variants, and correctly assign the direction of effect for causal variants. Here, we propose a procedure that exploits data from population controls to estimate the linear combination to be used in an case-parent trio rare-variant association test. Specifically, we estimate the linear combination by comparing population control allele frequencies with allele frequencies in the parents of affected offspring: These estimates are then used to construct a rare-variant transmission disequilibrium test (rvTDT) in the case-parent data. Because the rvTDT is conditional on the parents' data, using parental data in estimating the linear combination does not affect the validity or asymptotic distribution of the rvTDT. By using simulation, we show that our new population-control-based rvTDT can dramatically improve power over rvTDTs that do not use population control information across a wide variety of genetic architectures. It also remains valid under population stratification. We apply the approach to a cohort of epileptic encephalopathy (EE) trios and find that dominant (or additive) inherited rare variants are unlikely to play a substantial role within EE genes previously identified through de novo mutation studies.
引用
收藏
页码:845 / 853
页数:9
相关论文
共 50 条
  • [1] Improving power for rare-variant tests by integrating external controls
    Lee, Seunggeun
    Kim, Sehee
    Fuchsberger, Christian
    [J]. GENETIC EPIDEMIOLOGY, 2017, 41 (07) : 610 - 619
  • [2] Increasing Generality and Power of Rare-Variant Tests by Utilizing Extended Pedigrees
    Sul, Jae Hoon
    Cade, Brian E.
    Cho, Michael H.
    Qiao, Dandi
    Silverman, Edwin K.
    Redline, Susan
    Sunyaev, Shamil
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2016, 99 (04) : 846 - 859
  • [3] Rare-Variant Association Analysis: Study Designs and Statistical Tests
    Lee, Seunggeung
    Abecasis, Goncalo R.
    Boehnke, Michael
    Lin, Xihong
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2014, 95 (01) : 5 - 23
  • [4] Rare-variant association methods
    Orli Bahcall
    [J]. Nature Genetics, 2012, 44 (11) : 1178 - 1178
  • [5] Integrating external controls in case-control studies improves power for rare-variant tests
    Li, Yatong
    Lee, Seunggeun
    [J]. GENETIC EPIDEMIOLOGY, 2022, 46 (3-4) : 145 - 158
  • [6] Rare-variant association study
    Wang, Yin
    Chan, Ying Wai
    [J]. CELL GENOMICS, 2024, 4 (05):
  • [7] Inflated expectations: Rare-variant association analysis using public controls
    Kim, Jung
    Karyadi, Danielle M.
    Hartley, Stephen W.
    Zhu, Bin
    Wang, Mingyi
    Wu, Dongjing
    Song, Lei
    Armstrong, Gregory T.
    Bhatia, Smita
    Robison, Leslie L.
    Yasui, Yutaka
    Carter, Brian
    Sampson, Joshua N.
    Freedman, Neal D.
    Goldstein, Alisa M.
    Mirabello, Lisa
    Chanock, Stephen J.
    Morton, Lindsay M.
    Savage, Sharon A.
    Stewart, Douglas R.
    [J]. PLOS ONE, 2023, 18 (01):
  • [8] Robust Rare-Variant Association Tests for Quantitative Traits in General Pedigrees
    Jiang Y.
    Conneely K.N.
    Epstein M.P.
    [J]. Statistics in Biosciences, 2018, 10 (3) : 491 - 505
  • [9] Association tests based on haplotype similarity in Case-Parent trio studies
    Satten, GA
    Allen, AS
    [J]. GENETIC EPIDEMIOLOGY, 2005, 29 (03) : 275 - 276
  • [10] Reexamining Dis/Similarity-Based Tests for Rare-Variant Association with Case-Control Samples
    Wang, Charlotte
    Tzeng, Jung-Ying
    Wu, Pei-Zhen
    Preisig, Martin
    Hsiao, Chuhsing Kate
    [J]. GENETICS, 2018, 209 (01) : 105 - 113