Strategy for Texture Management in Metals Additive Manufacturing

被引:122
|
作者
Kirka, M. M. [1 ,2 ]
Lee, Y. [1 ,2 ]
Greeley, D. A. [1 ]
Okello, A. [1 ,2 ]
Goin, M. J. [1 ]
Pearce, M. T. [1 ]
Dehoff, R. R. [1 ,2 ]
机构
[1] Oak Ridge Natl Lab, Mfg Demonstrat Facil, Knoxville, TN 37932 USA
[2] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA
关键词
INCONEL; 718; SUPERALLOY; EVOLUTION;
D O I
10.1007/s11837-017-2264-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Additive manufacturing (AM) technologies have long been recognized for their ability to fabricate complex geometric components directly from models conceptualized through computers, allowing for complicated designs and assemblies to be fabricated at lower costs, with shorter time to market, and improved function. Lacking behind the design complexity aspect is the ability to fully exploit AM processes for control over texture within AM components. Currently, standard heat-fill strategies utilized in AM processes result in largely columnar grain structures. Proposed in this work is a point heat source fill for the electron beam melting (EBM) process through which the texture in AM materials can be controlled. Through this point heat source strategy, the ability to form either columnar or equiaxed grain structures upon solidification through changes in the process parameters associated with the point heat source fill is demonstrated for the nickel-base superalloy, Inconel 718. Mechanically, the material is demonstrated to exhibit either anisotropic properties for the columnar-grained material fabricated through using the standard raster scan of the EBM process or isotropic properties for the equiaxed material fabricated using the point heat source fill.
引用
收藏
页码:523 / 531
页数:9
相关论文
共 50 条
  • [1] Strategy for Texture Management in Metals Additive Manufacturing
    M. M. Kirka
    Y. Lee
    D. A. Greeley
    A. Okello
    M. J. Goin
    M. T. Pearce
    R. R. Dehoff
    [J]. JOM, 2017, 69 : 523 - 531
  • [2] Erratum to: Strategy for Texture Management in Metals Additive Manufacturing
    M. M. Kirka
    Y. Lee
    D. A. Greeley
    A. Okello
    M. J. Goin
    M. T. Pearce
    R. R. Dehoff
    [J]. JOM, 2017, 69 : 948 - 948
  • [3] Strategy for Texture Management in Metals Additive Manufacturing (vol 69, pg 3, 2017)
    Kirka, M. M.
    Lee, Y.
    Greeley, D. A.
    Okello, A.
    Goin, M. J.
    Pearce, M. T.
    Dehoff, R. R.
    [J]. JOM, 2017, 69 (05) : 948 - 948
  • [4] Additive manufacturing of metals
    Herzog, Dirk
    Seyda, Vanessa
    Wycisk, Eric
    Emmelmann, Claus
    [J]. ACTA MATERIALIA, 2016, 117 : 371 - 392
  • [5] Surface texture measurement for additive manufacturing
    Triantaphyllou, Andrew
    Giusca, Claudiu L.
    Macaulay, Gavin D.
    Roerig, Felix
    Hoebel, Matthias
    Leach, Richard K.
    Tomita, Ben
    Milne, Katherine A.
    [J]. SURFACE TOPOGRAPHY-METROLOGY AND PROPERTIES, 2015, 3 (02):
  • [6] Control of Anisotropic Crystallographic Texture in Powder Bed Fusion Additive Manufacturing of Metals and Ceramics—A Review
    Koji Hagihara
    Takayoshi Nakano
    [J]. JOM, 2022, 74 : 1760 - 1773
  • [7] MHD printhead for additive manufacturing of metals
    Suter, M.
    Weingaertner, E.
    Wegener, K.
    [J]. 1ST CIRP GLOBAL WEB CONFERENCE: INTERDISCIPLINARY RESEARCH IN PRODUCTION ENGINEERING (CIRPE2012), 2012, 2 : 102 - 106
  • [8] Evolution of solidification texture during additive manufacturing
    H. L. Wei
    J. Mazumder
    T. DebRoy
    [J]. Scientific Reports, 5
  • [9] Emerging Functional Metals in Additive Manufacturing
    Moghimian, Pouya
    Poirie, Thomas
    Kroeger, Jens
    Marion, Frederic
    Larouche, Frederic
    [J]. ADVANCED ENGINEERING MATERIALS, 2023, 25 (11)
  • [10] Special Issue on Additive Manufacturing with Metals
    Furumoto, Tatsuaki
    [J]. INTERNATIONAL JOURNAL OF AUTOMATION TECHNOLOGY, 2019, 13 (03) : 329 - 329