Conversion efficiency of skutterudite-based thermoelectric modules

被引:120
|
作者
Salvador, James R. [1 ]
Cho, Jung Y. [2 ]
Ye, Zuxin [2 ]
Moczygemba, Joshua E. [3 ]
Thompson, Alan J. [3 ]
Sharp, Jeffrey W. [3 ]
Koenig, Jan D. [4 ]
Maloney, Ryan [5 ]
Thompson, Travis [5 ]
Sakamoto, Jeffrey [5 ]
Wang, Hsin [6 ]
Wereszczak, Andrew A. [6 ]
机构
[1] GM Global Res & Dev, Chem & Mat Syst Lab, Warren, MI 48090 USA
[2] Optimal Inc, Plymouth, MI 48170 USA
[3] Marlow Ind Inc, Dallas, TX 75238 USA
[4] Fraunhofer Inst Phys Measurement Tech, D-79110 Freiburg, Germany
[5] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA
[6] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
关键词
FIGURE; TESTS; MERIT;
D O I
10.1039/c4cp01582g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Presently, the only commercially available power generating thermoelectric (TE) modules are based on bismuth telluride (Bi2Te3) alloys and are limited to a hot side temperature of 250 degrees C due to the melting point of the solder interconnects and/ or generally poor power generation performance above this point. For the purposes of demonstrating a TE generator or TEG with higher temperature capability, we selected skutterudite based materials to carry forward with module fabrication because these materials have adequate TE performance and are mechanically robust. We have previously reported the electrical power output for a 32 couple skutterudite TE module, a module that is type identical to ones used in a high temperature capable TEG prototype. The purpose of this previous work was to establish the expected power output of the modules as a function of varying hot and cold side temperatures. Recent upgrades to the TE module measurement system built at the Fraunhofer Institute for Physical Measurement Techniques allow for the assessment of not only the power output, as previously described, but also the thermal to electrical energy conversion efficiency. Here we report the power output and conversion efficiency of a 32 couple, high temperature skutterudite module at varying applied loading pressures and with different interface materials between the module and the heat source and sink of the test system. We demonstrate a 7% conversion efficiency at the module level when a temperature difference of 460 degrees C is established. Extrapolated values indicate that 7.5% is achievable when proper thermal interfaces and loading pressures are used.
引用
收藏
页码:12510 / 12520
页数:11
相关论文
共 50 条
  • [1] Thermal to Electrical Energy Conversion of Skutterudite-Based Thermoelectric Modules
    Salvador, James R.
    Cho, Jung Y.
    Ye, Zuxin
    Moczygemba, Joshua E.
    Thompson, Alan J.
    Sharp, Jeffrey W.
    Koenig, Jan D.
    Maloney, Ryan
    Thompson, Travis
    Sakamoto, Jeffrey
    Wang, Hsin
    Wereszczak, Andrew A.
    Meisner, Gregory P.
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2013, 42 (07) : 1389 - 1399
  • [2] Thermal to Electrical Energy Conversion of Skutterudite-Based Thermoelectric Modules
    James R. Salvador
    Jung Y. Cho
    Zuxin Ye
    Joshua E. Moczygemba
    Alan J. Thompson
    Jeffrey W. Sharp
    Jan D. König
    Ryan Maloney
    Travis Thompson
    Jeffrey Sakamoto
    Hsin Wang
    Andrew A. Wereszczak
    Gregory P. Meisner
    [J]. Journal of Electronic Materials, 2013, 42 : 1389 - 1399
  • [3] Modelling a Segmented Skutterudite-Based Thermoelectric Generator to Achieve Maximum Conversion Efficiency
    Yusuf, Aminu
    Ballikaya, Sedat
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (01):
  • [4] Performance of Skutterudite-Based Modules
    Nie, G.
    Suzuki, S.
    Tomida, T.
    Sumiyoshi, A.
    Ochi, T.
    Mukaiyama, K.
    Kikuchi, M.
    Guo, J. Q.
    Yamamoto, A.
    Obara, H.
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2017, 46 (05) : 2640 - 2644
  • [5] Performance of Skutterudite-Based Modules
    G. Nie
    S. Suzuki
    T. Tomida
    A. Sumiyoshi
    T. Ochi
    K. Mukaiyama
    M. Kikuchi
    J. Q. Guo
    A. Yamamoto
    H. Obara
    [J]. Journal of Electronic Materials, 2017, 46 : 2640 - 2644
  • [6] Transient-liquid-phase bonding for Skutterudite-based thermoelectric modules
    Stiewe, Christian
    Mueller, Eckhard
    [J]. SOLID STATE SCIENCES, 2024, 148
  • [7] Progress in skutterudite-based thermoelectric materials
    Wang, JY
    Liu, H
    Hu, XB
    Jiang, HD
    Zhao, SR
    Li, Q
    Boughton, RI
    Jiang, MH
    [J]. TWENTIETH INTERNATIONAL CONFERENCE ON THERMOELECTRICS, PROCEEDINGS, 2001, : 89 - 92
  • [8] Fabrication of Skutterudite-Based Tubular Thermoelectric Generator
    Jang, Hanhwi
    Kim, Jong Bae
    Stanley, Abbey
    Lee, Suhyeon
    Kim, Yeongseon
    Park, Sang Hyun
    Oh, Min-Wook
    [J]. ENERGIES, 2020, 13 (05)
  • [9] Polymeric Coatings for Skutterudite-Based Thermoelectric Materials
    Brostow, Witold
    Chen, IKang
    Lobland, Haley E. Hagg
    [J]. LUBRICANTS, 2022, 10 (04)
  • [10] Radioisotope power systems with skutterudite-based thermoelectric converters
    El-Genk, MS
    Saber, HH
    [J]. SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM-STAIF 2005, 2005, 746 : 485 - 494