Bayesian inference in the triangular cointegration model using a Jeffreys prior

被引:6
|
作者
Martin, GM
Martin, VL
机构
[1] Monash Univ, Dept Econometr & Business Stat, Clayton, Vic 3168, Australia
[2] Univ Melbourne, Dept Econ, Parkville, Vic 3052, Australia
关键词
Bayesian inference; cointegration; identification; Jeffreys prior; Markov chain Monte Carlo; consumption substitutability;
D O I
10.1080/03610920008832577
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper presents a strategy for conducting Bayesian inference in the triangular cointegration model. A Jeffreys prior is used to circumvent an identification problem in the parameter region in which there is a near lack of cointegration. Sampling experiments are used to compare the repeated sampling performance of the approach with alternative classical cointegration methods. The Bayesian procedure is applied to testing for substitution between private and public consumption for a range of countries, with posterior estimates produced via Markov Chain Monte Carlo simulators.
引用
收藏
页码:1759 / 1785
页数:27
相关论文
共 50 条
  • [1] Bayesian inference for nested designs based on Jeffreys's prior
    Li, H
    Stern, HS
    [J]. AMERICAN STATISTICIAN, 1997, 51 (03): : 219 - 224
  • [2] Bayesian inference in a time varying cointegration model
    Koop, Gary
    Leon-Gonzalez, Roberto
    Strachan, Rodney W.
    [J]. JOURNAL OF ECONOMETRICS, 2011, 165 (02) : 210 - 220
  • [3] Bayesian estimation of a bivariate copula using the Jeffreys prior
    Guillotte, Simon
    Perron, Francois
    [J]. BERNOULLI, 2012, 18 (02) : 496 - 519
  • [4] Bayesian Using Extension Jeffreys Prior for Weibull Regression Censored Data
    Ahmed, Al Omari Mohammed
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2018, 57 (06): : 73 - 82
  • [5] ON BAYESIAN-ANALYSIS OF GENERALIZED LINEAR-MODELS USING JEFFREYS PRIOR
    IBRAHIM, JG
    LAUD, PW
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1991, 86 (416) : 981 - 986
  • [6] Bayesian compressive sensing for thermal imagery using Gaussian-Jeffreys prior
    Gu, Xiaojing
    Zhou, Peng
    Gu, Xingsheng
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2017, 83 : 51 - 61
  • [7] Bayesian analysis based on the Jeffreys prior for the hyperbolic distribution
    Fonseca, Thais C. O.
    Migon, Helio S.
    Ferreira, Marco A. R.
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2012, 26 (04) : 327 - 343
  • [8] Parameter estimation of multivariate multiple regression model using bayesian with non-informative Jeffreys' prior distribution
    Saputro, D. R. S.
    Amalia, F.
    Widyaningsih, P.
    Affan, R. C.
    [J]. 1ST INTERNATIONAL CONFERENCE ON SCIENCE, MATHEMATICS, ENVIRONMENT AND EDUCATION, 2018, 1022
  • [9] Empirical Bayesian Inference Using a Support Informed Prior
    Zhang, Jiahui
    Gelb, Anne
    Scarnati, Theresa
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (02): : 745 - 774
  • [10] Adaptive sparseness using Jeffreys Prior
    Figueiredo, MAT
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14, VOLS 1 AND 2, 2002, 14 : 697 - 704