Fractional Moments and Maximum Entropy: Geometric Meaning

被引:4
|
作者
Gzyl, Henryk [1 ]
Inverardi, Pier Luigi Novi [2 ]
Tagliani, Aldo [2 ]
机构
[1] Ctr Finanzas IESA, DF, Caracas, Venezuela
[2] Univ Trento, Dept Econ & Management, I-38100 Trento, Trento, Italy
关键词
Fractional moments; Hermite-Birkoff interpolation; Kullback Leibler distance; Maximum entropy;
D O I
10.1080/03610926.2012.705212
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of recovering a probability density on a bounded or unbounded subset D of [0, infinity), from the knowledge of its sequence of fractional moments within a maximum entropy (MaxEnt) setup. Based upon entropy convergence results previously formulated, the fractional moments are selected so that the entropy of the MaxEnt approximation be minimum. A geometric interpretation of the reconstruction procedure is formulated as follows: the two moment curves generated by the unknown density and its MaxEnt approximation are interpolating in Hermite-Birkoff sense; that is, they are both interpolating and tangent at the selected nodes.
引用
收藏
页码:3596 / 3601
页数:6
相关论文
共 50 条
  • [1] Maximum entropy density estimation from fractional moments
    Inverardi, PLN
    Tagliani, A
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2003, 32 (02) : 327 - 345
  • [2] Maximum entropy distribution with fractional moments for reliability analysis
    Zhang, Xiaodong
    Low, Ying Min
    Koh, Chan Ghee
    [J]. STRUCTURAL SAFETY, 2020, 83
  • [3] Determining the lifetime distribution using fractional moments with maximum entropy
    Gzyl, Henryk
    Mayoral, Silvia
    [J]. HELIYON, 2024, 10 (15)
  • [4] Determination of the probability of ultimate ruin by maximum entropy applied to fractional moments
    Gzyl, Henryk
    Novi-Inverardi, Pier-Luigi
    Tagliani, Aldo
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2013, 53 (02): : 457 - 463
  • [5] Estimation of the maximum entropy quantile function using fractional probability weighted moments
    Deng, Jian
    Pandey, M. D.
    [J]. STRUCTURAL SAFETY, 2008, 30 (04) : 307 - 319
  • [6] MAXIMUM OF ENTROPY AND MOMENTS PROBLEM
    DACUNHACASTELLE, D
    GAMBOA, F
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1990, 26 (04): : 567 - 596
  • [7] MOMENTS OF THE MAXIMUM-ENTROPY AND THE SYMMETRIC MAXIMUM-ENTROPY DISTRIBUTION
    THEIL, H
    KIDWAI, SA
    [J]. ECONOMICS LETTERS, 1981, 7 (04) : 349 - 353
  • [8] Maximum Geometric Quantum Entropy
    Anza, Fabio
    Crutchfield, James P.
    [J]. ENTROPY, 2024, 26 (03)
  • [9] Probability Distributions Approximation via Fractional Moments and Maximum Entropy: Theoretical and Computational Aspects
    Inverardi, Pier Luigi Novi
    Tagliani, Aldo
    [J]. AXIOMS, 2024, 13 (01)
  • [10] An effective approach for probabilistic lifetime modelling based on the principle of maximum entropy with fractional moments
    Zhang, Xufang
    He, Wei
    Zhang, Yimin
    Pandey, Mahesh D.
    [J]. APPLIED MATHEMATICAL MODELLING, 2017, 51 : 626 - 642