A Collaboration of Surface Protection and Bulk Doping for High-performance Li-rich Cathode Materials

被引:4
|
作者
Wang, Min-Jun [1 ]
Yu, Fu-Da [1 ]
Sun, Gang [1 ]
Gu, Da-Ming [1 ]
Wang, Zhen-Bo [1 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers, 92 West Da Zhi St, Harbin 150001, Heilongjiang, Peoples R China
来源
CHEMISTRYSELECT | 2019年 / 4卷 / 20期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Bulk doping; Li-rich oxide cathode material; Pyrophosphate; Surface coating; Voltage drop; LAYERED OXIDES; ELECTROCHEMICAL PERFORMANCE; LI2MNO3; CATHODE; ION BATTERIES; STABILITY;
D O I
10.1002/slct.201901101
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Li-rich layered oxides (LLRO) are promising high energy-density cathode, but always suffer from the oxygen loss in initial activation and gradual structure transformation during cycling, which leads to capacity degradation and potential decay. Here, we employ a simple strategy to achieve the collaboration of surface protection and bulk doping for improving the performance of Li-rich material. Scanning electron microscope and transmission electron microscopy tests demonstrate that a nanoscale protective layer of magnesium pyrophosphate is uniformly coated on the Li-rich material surface. X-ray diffraction test indicates Mg2+ and P2O74- are incorporated into the crystal structure, which induces the larger lattice spacing and lower cation mixing. As a result, the resultant LLRO displays extremely high Coulombic efficiency of 91.8% and discharge capacity of 288.4 mAh g(-1), showing prominent cycling stability of 89.2% after 200 cycles. Furthermore, our strategy also suppresses the attenuation of average voltage during cycling and the potential drop is only 0.56 mV per cycle from 25 th to 200 th cycle. The excellent electrochemical performance can be ascribed to the combined merits of surface protection and bulk doping. This strategy may provide some new insights into the design and synthesis of high-performance electrode materials.
引用
收藏
页码:6256 / 6264
页数:9
相关论文
共 50 条
  • [1] Molten salt synthesis and high-performance of nanocrystalline Li-rich cathode materials
    Wang ZhenYao
    Li Biao
    Ma Jin
    Xia DingGuo
    RSC ADVANCES, 2014, 4 (30) : 15825 - 15829
  • [2] Li-rich layered oxide single crystal with Na doping as a high-performance cathode for Li ion batteries
    Xu, Chunying
    Li, Jili
    Sun, Jie
    Zhang, Wanzhen
    Ji, Baoming
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 895
  • [3] Surface F-doping for stable structure and high electrochemical performance of Li-rich Mn-based cathode materials
    Wang, Bo
    Cui, Jing
    Li, Zhaojin
    Wang, Huan
    Zhang, Di
    Wang, Qiujun
    Sun, Huilan
    Hu, Zhilin
    Journal of Alloys and Compounds, 2022, 929
  • [4] In Situ Surface Reaction for the Preparation of High-Performance Li-Rich Mn-Based Cathode Materials with Integrated Surface Functionalization
    Su, Zihao
    Guo, Zhihao
    Xie, Haoyu
    Qu, Meizhen
    Peng, Gongchang
    Wang, Hao
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (30) : 39447 - 39459
  • [5] Surface F-doping for stable structure and high electrochemical performance of Li-rich Mn-based cathode materials
    Wang, Bo
    Cui, Jing
    Li, Zhaojin
    Wang, Huan
    Zhang, Di
    Wang, Qiujun
    Sun, Huilan
    Hu, Zhilin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 929
  • [6] High-Performance Li-Rich Layered Transition Metal Oxide Cathode Materials for Li-Ion Batteries
    Redel, Katarzyna
    Kulka, Andrzej
    Plewa, Anna
    Molenda, Janina
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (03) : A5333 - A5342
  • [7] Integrating surface modification to improve the electrochemical performance of Li-rich cathode materials
    Zhang, Xiaoyuan
    Gao, Yanxiao
    Li, Xiangnan
    Liu, Wenfeng
    Zhang, Huishuang
    Yang, Shuting
    Yin, Yanhong
    INORGANIC CHEMISTRY FRONTIERS, 2024, 11 (17): : 5517 - 5527
  • [8] Morphology Control and Na+ Doping toward High-Performance Li-Rich Layered Cathode Materials for Lithium-Ion Batteries
    Wang, Qian
    He, Wei
    Wang, Laisen
    Li, Shuai
    Zheng, Hongfei
    Liu, Qun
    Cai, Yuxin
    Lin, Jie
    Xie, Qingshui
    Peng, Dong-Liang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (01) : 197 - 206
  • [9] A cation and anion dual-doping strategy in novel Li-rich Mn-based cathode materials for high-performance Li metal batteries
    Sun, Xia
    Qin, Chunling
    Zhao, Boyang
    Jia, Shufeng
    Wang, Zhifeng
    Yang, Tingzhou
    Liu, Xuancheng
    Pan, Lining
    Zheng, Lili
    Luo, Dan
    Zhang, Yongguang
    ENERGY STORAGE MATERIALS, 2024, 70
  • [10] In situ construction of a favorable cathode electrolyte interphase through a fluorosilane additive for high-performance Li-rich cathode materials
    Yuan-Yuan Pan
    Chang-Ding Qiu
    Shi-Jie Qin
    Zuo-Fei Wang
    Jing-Song Yang
    Heng-Jiang Cong
    Fu-Sheng Ke
    Rare Metals, 2022, 41 : 3630 - 3638