Propagation of ultra-short optical pulses in cubic nonlinear media

被引:385
|
作者
Schäfer, T
Wayne, CE
机构
[1] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
[2] Boston Univ, Dept Math, Boston, MA 02215 USA
[3] Boston Univ, Ctr Biodynam, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
nonlinear guided waves; dynamics of nonlinear optical systems; fiber optics;
D O I
10.1016/j.physd.2004.04.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive a partial differential equation that approximates solutions of Maxwell's equations describing the propagation of ultra-short optical pulses in nonlinear media,and which extends the prior analysis of Alterman and Rauch [Phys. Lett. A 264 (2000) 390; Diffractive nonlinear geometric optics for short pulses, Preprint, 2002]. We discuss (non-rigorously) conditions under which this approximation should be valid, but the main contributions of this paper are: (1) an emphasis on the fact that the model equation for short pulse propagation may depend on the details of the optical susceptibility in the wavelength regime under consideration, (2) a numerical comparison of solutions of this model equation with solutions of the full nonlinear partial differential equation, (3) a local well-posedness result for the model equation and (4) a proof that in contrast to the nonlinear Schrodinger equation, which models slowly varying wavetrains, this equation has no smooth pulse solutions which propagate with fixed shape and, speed. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:90 / 105
页数:16
相关论文
共 50 条
  • [1] Stabilization of ultra-short pulses in cubic nonlinear media
    Chung, Y.
    Schafer, T.
    [J]. PHYSICS LETTERS A, 2007, 361 (1-2) : 63 - 69
  • [2] PROPAGATION OF STABLE ULTRA-SHORT OPTICAL PULSES
    MAGEE, CJ
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B, 1971, B 2 (02): : 208 - &
  • [3] Ultra-short pulses in linear and nonlinear media
    Chung, Y
    Jones, CKRT
    Schäfer, T
    Wayne, CE
    [J]. NONLINEARITY, 2005, 18 (03) : 1351 - 1374
  • [4] Propagation of ultra-short optical pulses in nonlinear optical fibers: An analysis by the beam propagation method
    Majewski, A
    Przezdziecki, A
    [J]. MMET'96 - VITH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY, PROCEEDINGS, 1996, : 408 - 411
  • [5] On the propagation of vector ultra-short pulses
    Monika Pietrzyk
    I. Kanattšikov
    Uwe Bandelow
    [J]. Journal of Nonlinear Mathematical Physics, 2008, 15 : 162 - 170
  • [6] On the propagation of vector ultra-short pulses
    Pietrzyk, Monika
    Kanattsikov, I.
    Bandelow, Uwe
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (02) : 162 - 170
  • [7] Nonlinear Mode Coupling of Ultra-Short Pulses in Optical Fibers
    Horak, P.
    Poletti, F.
    [J]. 2009 IEEE/LEOS WINTER TOPICALS MEETING SERIES (WTM 2009), 2009, : 170 - 171
  • [8] Propagation of the ultra-short femtosecond pulses and the rogue wave in an optical fiber
    Shehata, Maha S. M.
    Rezazadeh, Hadi
    Zahran, Emad H. M.
    Bekir, Ahmet
    [J]. JOURNAL OF OPTICS-INDIA, 2020, 49 (02): : 256 - 262
  • [9] Propagation of the ultra-short femtosecond pulses and the rogue wave in an optical fiber
    Maha S. M. Shehata
    Hadi Rezazadeh
    Emad H. M. Zahran
    Ahmet Bekir
    [J]. Journal of Optics, 2020, 49 : 256 - 262
  • [10] Evolution of ultra-short and extremely short electromagnetic pulses in quadratic-cubic nonlinear medium
    Maimistov, AI
    [J]. ICONO 2001: ULTRAFAST PHENOMENA AND STRONG LASER FIELDS, 2002, 4752 : 49 - 54