An infinite ε-bound stabilization design for a class of singularly perturbed systems

被引:18
|
作者
Chiou, JS [1 ]
Kung, FC [1 ]
Li, THS [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Elect Engn, Control Syst Lab, Tainan 70101, Taiwan
关键词
Lyapunov equation; Lyapunov function; singular perturbation parameter; singularly perturbed systems;
D O I
10.1109/81.809557
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
According to the Lyapunov stability theorem and the bounds of solutions of the Lyapunov equation, the state feedback gain matrices can be determined to guarantee the stability of the singularly perturbed systems for all epsilon is an element of (0,infinity). A numeral example and an operational amplifier circuit are given to illustrate the effectiveness of the proposed scheme.
引用
收藏
页码:1507 / 1510
页数:4
相关论文
共 50 条
  • [1] Stabilization of a class of singularly perturbed switched systems
    de Souza, Ryan P. C.
    Kader, Zohra
    Caux, Stephane
    [J]. 2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 4747 - 4752
  • [2] Robust Stabilization for a Class of Nonlinear Singularly Perturbed Systems
    Amjadifard, R.
    Beheshti, M. T. H.
    Yazdanpanah, M. J.
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2011, 133 (05):
  • [3] STABILIZATION OF A CLASS OF SINGULARLY PERTURBED BILINEAR-SYSTEMS
    ASAMOAH, F
    JAMSHIDI, M
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1987, 46 (05) : 1589 - 1594
  • [4] An infinite ε-bound stability criterion for a class of multiparameter singularly perturbed time-delay systems
    Chiou, JS
    Wang, CJ
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2005, 36 (08) : 485 - 490
  • [5] Stabilization bound of singularly perturbed systems subject to actuator saturation
    Yang, Chunyu
    Sun, Jing
    Ma, Xiaoping
    [J]. AUTOMATICA, 2013, 49 (02) : 457 - 462
  • [7] Robust stabilization of a class of singularly perturbed discrete bilinear systems
    Chiou, JS
    Kung, FC
    Li, THS
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (06) : 1187 - 1191
  • [8] Global exponential stabilization for a class of nonlinear singularly perturbed systems
    Pan, ST
    Teng, CC
    [J]. JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 1996, 19 (06) : 725 - 731
  • [9] STABILIZATION OF A CLASS OF SINGULARLY PERTURBED BILINEAR-SYSTEMS - COMMENT
    LI, THS
    SUN, YY
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1988, 48 (03) : 1357 - 1358
  • [10] Stabilization bound of discrete singularly perturbed systems subject to actuator saturation
    Ma, Lei
    Wang, Qi
    Yang, Chunyu
    Ma, Xiaoping
    [J]. 2014 INTERNATIONAL CONFERENCE ON MECHATRONICS AND CONTROL (ICMC), 2014, : 913 - 918