Duality theory of weighted Hardy spaces with arbitrary number of parameters

被引:27
|
作者
Lu, Guozhen [1 ]
Ruan, Zhuoping [2 ,3 ]
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, IMS, Nanjing 210093, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
Duality; weighted Hardy space; discrete Littlewood-Paley-Stein analysis; Caderon's identity; Max-Min type inequality; multiparameter A(infinity) weight; multiparameter singular integrals; SINGULAR-INTEGRALS; PRODUCT; VERSION; BMO;
D O I
10.1515/forum-2012-0018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the discrete Littlewood-Paley-Stein analysis to get the duality result of the weighted product Hardy space for arbitrary number of parameters under a rather weak condition on the product weight w is an element of A(infinity)(R-n1 x ... x R-nk). We will show that for any k >= 2, (H-w(p) (R-n1 x ... x R-nk))* = CMOwp (R-n1 x ... x R-nk) (a generalized Carleson measure), and obtain the boundedness of singular integral operators on BMOw. Our theorems even when the weight function w = 1 extend the H-1-BMO duality of Chang-R. Fefferman for the non-weighted two-parameter Hardy space H-1(R-n x R-m) to H-p (R-n1 x ... x R-nk)for all 0 < p <= 1 and our weighted theory extends the duality result of Krug-Torchinsky on weighted Hardy spaces H-w(p) (R-n x R-m) for w is an element of A(r) (R-n x R-m) with 1 <= r <= 2 and r/2 < p <= 1 to H-w(p) (R-n1 x ... x R-nk) with w is an element of A(infinity) (R-n1 x ... x R-nk) for all 0 < p <= 1.
引用
收藏
页码:1429 / 1457
页数:29
相关论文
共 50 条