Fractal dimension and similarity search in high-dimensional spatial databases

被引:0
|
作者
Malcok, Mehmet [1 ]
Aslandogan, Y. Alp. [2 ]
Yesildirek, Aydin [3 ]
机构
[1] Behrend Coll, Dept Comp Sci, Erie, PA 16563 USA
[2] Univ Texas Arlington, Dept Comp Sci & Engn, Arlington, TX 76019 USA
[3] Gannan Univ, Dept Elect Engn, Erie, PA 16563 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper the relationship between the dimension of the address space and the intrinsic ("fractal") dimension of the data set is investigated An estimate of a lower bound for the number of features needed in a similarity search is given and it is shown that this bound is a function of the intrinsic dimension of the data set. Our result indicates the "deflation" of the dimensionality curse in fractal data sets by showing the explicit relationship between the intrinsic dimension of the data set and the embedding dimension of the address space. More precisely, we show that the relationship between the intrinsic dimension and the embedded dimension is linear
引用
收藏
页码:380 / +
页数:2
相关论文
共 50 条
  • [1] A Hierarchical Bitmap Indexing Method for Similarity Search in High-Dimensional Multimedia Databases
    Nang, Jongho
    Park, Joohyoun
    Yang, Jihoon
    Kim, Saejoon
    [J]. JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2010, 26 (02) : 393 - 407
  • [2] Towards enhanced compression techniques for efficient high-dimensional similarity search in multimedia databases
    Balko, S
    Schmitt, I
    Saake, G
    [J]. XML-BASED DATA MANAGEMENT AND MULTIMEDIA ENGINEERING-EDBT 2002 WORKSHOPS, 2002, 2490 : 365 - 375
  • [3] The GC-tree: A high-dimensional index structure for similarity search in image databases
    Cha, GH
    Chung, CW
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2002, 4 (02) : 235 - 247
  • [4] A cell-based high-dimensional indexing scheme for similarity search in multimedia databases
    Chang, JW
    Kim, YC
    [J]. 6TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL I, PROCEEDINGS: INFORMATION SYSTEMS DEVELOPMENT I, 2002, : 51 - 56
  • [5] Fast similarity search for high-dimensional dataset
    Wang, Quan
    You, Suya
    [J]. ISM 2006: EIGHTH IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA, PROCEEDINGS, 2006, : 799 - +
  • [6] High-Dimensional Similarity Search for Scalable Data Science
    Echihabi, Karima
    Zoumpatianos, Kostas
    Palpanas, Themis
    [J]. 2021 IEEE 37TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2021), 2021, : 2369 - 2372
  • [7] Memory Vectors for Similarity Search in High-Dimensional Spaces
    Iscen, Ahmet
    Furon, Teddy
    Gripon, Vincent
    Rabbat, Michael
    Jegou, Herve
    [J]. IEEE TRANSACTIONS ON BIG DATA, 2018, 4 (01) : 65 - 77
  • [8] Clustering for approximate similarity search in high-dimensional spaces
    Li, C
    Chang, E
    Garcia-Molina, H
    Wiederhold, G
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2002, 14 (04) : 792 - 808
  • [9] What's Wrong with High-Dimensional Similarity Search?
    Blott, Stephen
    Weber, Roger
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2008, 1 (01): : 3 - 3
  • [10] An adaptive index structure for high-dimensional similarity search
    Wu, P
    Manjunath, BS
    Chandrasekaran, S
    [J]. ADVANCES IN MUTLIMEDIA INFORMATION PROCESSING - PCM 2001, PROCEEDINGS, 2001, 2195 : 71 - 77