No-reference High Definition Video Quality Assessment based on BP Neural Network

被引:0
|
作者
Xu, Jiangbo [1 ]
Jiang, Xiuhua [1 ]
机构
[1] Commun Univ China, Informat Engn Sch, Beijing, Peoples R China
关键词
no-reference video quality assessment; Back Propagation neural network; region of interest; feature extractor;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A no-reference high definition video quality assessment model is presented using Back Propagation (BP) neural network. Firstly, the paper introduces human visual region of interest to the system. Secondly extracts several temporal and spatial features from the region of interest. And then a no-reference video quality assessment model is learned by training a BP neural network. Experimental results on real videos are given to demonstrate the performance of the proposed algorithm.
引用
收藏
页码:384 / 387
页数:4
相关论文
共 12 条
  • [1] [Anonymous], 2004, TEST MATERIALS BE US
  • [2] [Anonymous], THESIS
  • [3] [Anonymous], 1998, METHODOLOGY SUBJECTI
  • [4] [Anonymous], P ICIP
  • [5] No-reference JPEG-image quality assessment using GAP-RBF
    Babu, R. Venkatesh
    Suresh, S.
    Perkis, Andrew
    [J]. SIGNAL PROCESSING, 2007, 87 (06) : 1493 - 1503
  • [6] Ding X., 2004, J. Image Graph, V9, P190
  • [7] Perceptual-based quality metrics for image and video services: A survey
    Engelke, Ulrich
    Zepernick, Hans-Juergen
    [J]. 2007 NEXT GENERATION INTERNET NETWORKS, 2007, : 190 - +
  • [8] Gastaldo P, 2004, 2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 5, PROCEEDINGS, P772
  • [9] Objective quality assessment of MPEG-2 video streams by using CBP neural networks
    Gastaldo, P
    Rovetta, S
    Zunino, R
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (04): : 939 - 947
  • [10] Hu Y., 2005, SPACECRAFT RECOVERY, V26, P20