An Edge-Cloud Collaborative Object Detection System

被引:0
|
作者
Xu, Lei [1 ]
Yang, Dingkun [1 ]
机构
[1] Jiangsu Elect Power Informat Technol Co Ltd, Nanjing 210000, Peoples R China
来源
UBIQUITOUS SECURITY | 2022年 / 1557卷
关键词
Edge computing; Video analytics; Object detection; Neural networks; Scheduling problem; Random rounding;
D O I
10.1007/978-981-19-0468-4_28
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Edge computing system usually consists of the lightweight neural network to preprocess the video stream, and then transmits the intermediate data to the cloud for video analysis, which not only ensures the real-time performance of video processing but also greatly reduces the WAN bandwidth consumption. However, many existing edge processing systems sacrifice video processing accuracy to reduce intermediate transmission volume or reduce processing delay. Therefore, the leveraging of accuracy and latency places a challenge on how to deploy the network on the edge device and set the pre-processing parameters. This paper builds a real-time video stream processing system, then tries to achieve the balance between the cost and benefit of edge preprocessing by designing a dynamic configuration algorithm for optimal preprocessing deployment to achieve low latency, low transmission, and high precision real-time video processing.
引用
收藏
页码:371 / 378
页数:8
相关论文
共 50 条
  • [1] Design and Construction of a Hybrid Edge-Cloud Smart Surveillance System with Object Detection
    McBride, G. D.
    Sumbwanyambe, M.
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, AND INTELLIGENT SYSTEMS (ICCCIS), 2021, : 642 - 647
  • [2] A Collaborative and Sustainable Edge-Cloud Architecture for Object Tracking with Convolutional Siamese Networks
    Gu, Haifeng
    Ge, Zishuai
    Cao, E.
    Chen, Mingsong
    Wei, Tongquan
    Fu, Xin
    Hu, Shiyan
    [J]. IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2021, 6 (01): : 144 - 154
  • [3] Collaborative Edge-Cloud and Edge-Edge Video Analytics
    Gazzaz, Samaa
    Nawab, Faisal
    [J]. PROCEEDINGS OF THE 2019 TENTH ACM SYMPOSIUM ON CLOUD COMPUTING (SOCC '19), 2019, : 484 - 484
  • [4] Collaborative Edge-Cloud AI for IoT Driven Secure Healthcare System
    Gupta, Lay
    [J]. 2023 IEEE INTERNATIONAL SYSTEMS CONFERENCE, SYSCON, 2023,
  • [5] Online data caching in edge-cloud collaborative system with the data center
    Han, Xinxin
    Dai, Sijia
    Gao, Guichen
    Wang, Yang
    Zhang, Yong
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (05) : 3351 - 3363
  • [6] Online data caching in edge-cloud collaborative system with the data center
    Xinxin Han
    Sijia Dai
    Guichen Gao
    Yang Wang
    Yong Zhang
    [J]. Journal of Combinatorial Optimization, 2022, 44 : 3351 - 3363
  • [7] EC2Detect: Real-Time Online Video Object Detection in Edge-Cloud Collaborative IoT
    Guo, Siyan
    Zhao, Cong
    Wang, Guiqin
    Yang, Jiaqing
    Yang, Shusen
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (20): : 20382 - 20392
  • [8] Edge YOLO: Real-Time Intelligent Object Detection System Based on Edge-Cloud Cooperation in Autonomous Vehicles
    Liang, Siyuan
    Wu, Hao
    Zhen, Li
    Hua, Qiaozhi
    Garg, Sahil
    Kaddoum, Georges
    Hassan, Mohammad Mehedi
    Yu, Keping
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 25345 - 25360
  • [9] Edge-cloud collaborative fabric defect detection based on industrial internet architecture
    Zhao, Shuxuan
    Wang, Junliang
    Zhang, Jie
    Bao, Jinsong
    Zhong, Ray
    [J]. 2020 IEEE 18TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), VOL 1, 2020, : 483 - 487
  • [10] Edge-Cloud Collaborated Object Detection via Difficult-Case Discriminator
    Cao, Zhiqiang
    Li, Zhijun
    Chen, Yongrui
    Pan, Heng
    Hu, Youbing
    Liu, Jie
    [J]. 2023 IEEE 43RD INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS, ICDCS, 2023, : 259 - 270