Error bounds in the isometric Arnoldi process

被引:3
|
作者
BunseGerstner, A [1 ]
Fassbender, H [1 ]
机构
[1] UNIV BREMEN,FACHBEREICH MATH & INFORMAT 3,D-28334 BREMEN,GERMANY
关键词
unitary eigenvalue problem; Arnoldi process; error bounds; signal processing;
D O I
10.1016/S0377-0427(97)00148-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Error bounds for the eigenvalues computed in the isometric Arnoldi method are derived. The Arnoldi method applied to a unitary matrix U successively computes a sequence of unitary upper Hessenberg matrices H-k, k = 1, 2,... The eigenvalues of the H-k's are increasingly better approximations to eigenvalues of U. An upper bound for the distance of the spectrum of H-k from the spectrum of U, and an upper bound for the distance between each individual eigenvalue of H-k and one of U are given. Between two eigenvalues of H-k on the unit circle, there is guaranteed to lie an eigenvalue of U. The results are applied to a problem in signal processing.
引用
收藏
页码:53 / 72
页数:20
相关论文
共 50 条